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Introduction

• 1D Convolutional Neural Networks (CNNs) have 
recently become the state-of-the-art technique 
for many key signal processing applications, e.g.
– patient-specific ECG classification, 

– structural health monitoring, 

– anomaly detection in power electronics circuitry, and 

– motor-fault detection.

• The main difference between 1D and 2D CNNs is 
that 1D arrays replace 2D matrices for both 
kernels and feature maps. 
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A sample 1D CNN configuration with 3 (convolution) 
CNN and 2 (fully-connected) MLP layers
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Advantages of 1D CNNs

• Instead of matrix operations, simple array operations are needed for FP and BP
– Lower computational complexity compared to 2D CNNs counterpart.

• Recent studies showed that 1D CNNs with relatively shallow architectures (i.e. 
small number of hidden layers and neurons) were able to learn challenging tasks 
involving 1D signals. On the other hand, 2D CNNs usually require deeper 
architectures to handle such tasks. Obviously, networks with shallow 
architectures are much easier to train and implement.

• Usually, training deep 2D CNNs requires special hardware setup (e.g. Cloud 
computing or GPU farms). On the other hand, any CPU implementation over a 
standard computer is feasible and relatively fast for training compact 1D CNNs 
with few hidden layers (e.g. 2 or less) and neurons (e.g. < 50).

• Due to their low computational requirements, compact 1D CNNs are well-suited 
for real-time and low-cost applications especially on mobile or hand-held devices.

10/05/2019 Prof. S. Kiranyaz 4



Three consecutive CNN layers
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Back Propagation in 1D CNN
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Initialize weights and biases (e.g., randomly, ~U(-0.1, 0.1)) 

For each BP iteration DO:

•For each 1D raw signal in the dataset, DO:

FP: Forward propagate from the input layer to the output layer 

to find outputs of each neuron at each layer, sil, ∀i∈[1,Nl], and
∀l∈[1,L].

BP: Compute delta error at the output layer and back-

propagate it to the first hidden layer to compute the delta errors, 

∆kl, ∀k∈[1,Nl], and ∀l∈[1,L].
PP: Post-process to compute the weight and bias sensitivities 

Update: Update the weights and biases by (accumulating) 

sensitivities scaled with the learning factor, ε



Some major applications of 1D CNNs
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Real-time Electrocardiogram (ECG) 
Monitoring

• Electrocardiogram (ECG) signals are extensively used by
medical practitioners to monitor and evaluate the
cardiac health.

• The first 1D CNN application was on ECG beat
identification where a “patient-specific” solution was
proposed, i.e., for each arrhythmia patient a dedicated
compact 1D CNN was trained by using the patient-
specific training data.
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Real-time Electrocardiogram (ECG) 
Monitoring
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Advance Warning for Cardiac Arrhythmia

11

Kiranyaz, Scientific Reports, 2017. (Springer Nature)
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Personalized Monitoring and Advance Warning 
System for Cardiac Arrhythmias
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Vibration-Based Structural Damage 
Detection in Civil Infrastructure

10/05/2019 Prof. S. Kiranyaz 13



Structural Health Monitoring & 
Damage Detection
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Healthy vs. damaged joints
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Vibration Signals: healthy vs. damaged 
Can you see the difference?
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(Examples of undamaged acceleration signals) 

 

(Examples of damaged acceleration signals) 
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Condition Monitoring in Rotating 
Mechanical/Aerospace Machine Parts
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Healthy (top) vs. 
Faulty (bottom) 
motor current 

signals
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ROC plots of 1D CNN and 6 different methods. The x- and y-axis 

represent the false positive rate and true positive rate, respectively.
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Fault Detection in Modular Multilevel 
Converters (MMC)

• High-power multilevel converters have been utilized 
extensively for efficient power conversion. The modular 
multilevel converters (MMC) are arguably the most 
efficient and feasible multilevel converter topology for 
medium power to high power applications.

• Each cell may have one or more switches and a switch 
failure may occur in anyone of these cells. The steady-
state normal and fault behavior of a cell voltage vary 
significantly based on the changes in the load current 
and the fault timing, which makes it difficult to detect 
and identify such faults in a fast manner. 
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Implementation (left) and configuration 
(right) of the 4-cell MMC circuit
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The main blocks of the proposed system and the 
offline training of the compact 1D CNN
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The output of the data processing block over the cell1 capacitor voltage (channel 2) of 
the normal and 2 fault classes (classes 1 and 3) for Iload=1A. 

10/05/2019 Prof. S. Kiranyaz 25



The proposed system architecture for real-time fault detection and 

identification after the (offline) training of the 1D CNN..
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Computational Complexity

• In many applications covered in this study, it has been 
shown that 1D CNNs are relatively easier to train and offer 
the minimal computational complexity while achieving 
state-of-the-art performance levels. 

• They are especially suitable for mobile or hand-held devices 
with limited computation power and battery life. 

• For instance, specifically for the single-CPU implementation 
of ECG arrhythmia detection and identification method, the 
total time for a FP of a single beat to obtain the class vector 
is about 0.58msec and 0.74msec for 64 and 128 samples 
beat resolutions, respectively.  

• Note that this speed is more than 1000x faster than the 
real-time requirement.
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For the motor fault detection, the average execution times (in msec) of:  

Leftmost bar plot 1: the 1D CNN method, bar plots and competing algorithms [1-4]  
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Conclusions
• With a proper systematic approach, compact 1D CNNs can 

surpass conventional approaches. 
• Compact 1D CNNs provide an advantage for those 

applications where labeled data is scarce, and where a low-
cost and real-time implementation is desired.

• In many applications covered in this study, it has been shown 
that 1D CNNs are easier to train and offer the minimal 
computational complexity whilst achieving state-of-the-art 
performance.

• 1D CNNs papers are increasingly attracting attention; for 
instance, two recent 1D CNN publications cited earlier have 
immediately become the most-popular and most-cited 
articles in their journals. 

For further inquiries, Serkan Kiranyaz, mkiranyaz@qu.edu.qa
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