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Introduction

* 1D Convolutional Neural Networks (CNNs) have
recently become the state-of-the-art technique
for many key signal processing applications, e.g.

— patient-specific ECG classification,

— structural health monitoring,

— anomaly detection in power electronics circuitry, and
— motor-fault detection.

 The main difference between 1D and 2D CNNs is
that 1D arrays replace 2D matrices for both
kernels and feature maps.



A sample 1D CNN configuration with 3 (convolution)
CNN and 2 (fully-connected) MLP layers
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Advantages of 1D CNNs

Instead of matrix operations, simple array operations are needed for FP and BP
— Lower computational complexity compared to 2D CNNs counterpart.

Recent studies showed that 1D CNNs with relatively shallow architectures (i.e.
small number of hidden layers and neurons) were able to learn challenging tasks
involving 1D signals. On the other hand, 2D CNNs usually require deeper
architectures to handle such tasks. Obviously, networks with shallow
architectures are much easier to train and implement.

Usually, training deep 2D CNNs requires special hardware setup (e.g. Cloud
computing or GPU farms). On the other hand, any CPU implementation over a
standard computer is feasible and relatively fast for training compact 1D CNNs
with few hidden layers (e.g. 2 or less) and neurons (e.g. < 50).

Due to their low computational requirements, compact 1D CNNs are well-suited
for real-time and low-cost applications especially on mobile or hand-held devices.
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Back Propagation in 1D CNN

Initialize weights and biases (e.g., randomly, ~U(-0.1, 0.1))

For each BP iteration DO:

*For each 1D raw signal in the dataset, DO:

v FP: Forward propagate from the input layer to the output layer
to find outputs of each neuron at each layer, sil, Vie/1,NI], and
vie/1,L].

v'BP: Compute delta error at the output layer and back-
propagate it to the first hidden layer to compute the delta errors,
Akl Vke/1,NI], and ViE[1,L].

v PP: Post-process to compute the weight and bias sensitivities

v'Update: Update the weights and biases by (accumulating)
sensitivities scaled with the learning factor, ¢



Some major applications of 1D CNNs
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Real-time motor fault detection
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Real-time Electrocardiogram (ECG)
Monitoring

* Electrocardiogram (ECG) signals are extensively used by
medical practitioners to monitor and evaluate the

cardiac health.

e The first 1D CNN application was on ECG beat
identification where a “patient-specific” solution was
proposed, i.e., for each arrhythmia patient a dedicated
compact 1D CNN was trained by using the patient-
specific training data.
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Advance Warning for Cardiac Arrhythmia
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Common Causes of Heart Arrhythmia
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Personalized Monitoring and Advance Warning
System for Cardiac Arrhythmias
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Vibration-Based Structural Damage
Detection in Civil Infrastructure

=
—_
=
—
~
=
5 g
.~ <
~
s LESSUEEE <
—
=
=
- Alarm System
N
. "'!l“'.""'\',ﬂ“""
Sensors )I Data Acquisition I—— Data processing

Sensing System

10/05/2019 Prof. S. Kiranyaz 13



Structural Health Monitoring &
Damage Detection
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Vibration Signals: healthy vs. damaged
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Healthy (top) vs.
Faulty (bottom)
motor current
signals
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Time-domain Healthy motor current signal
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ROC plots of 1D CNN and 6 different methods. The x- and y-axis
represent the false positive rate and true positive rate, respectively.
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Fault Detection in Modular Multilevel
Converters (MMC)

* High-power multilevel converters have been utilized
extensively for efficient power conversion. The modular
multilevel converters (MMC) are arguably the most
efficient and feasible multilevel converter topology for
medium power to high power applications.

* Each cell may have one or more switches and a switch
failure may occur in anyone of these cells. The steady-
state normal and fault behavior of a cell voltage vary
significantly based on the changes in the load current
and the fault timing, which makes it difficult to detect
and identify such faults in a fast manner.



Implementation (left) and configuration
(right) of the 4-cell MMC circuit

[ DC-power supply | [ Four Mmc cells| [ Oscilloscope | [ ospace ps1103

S. Kiranyaz, A. Gastli, L. Ben-Brahim, N. Al-Emadi, M. Gabbouj, Real-Time Fault
Detection and Identification for MMC using 1D Convolutional Neural Networks, IEEE
Transactions on Industrial Electronics (2018). doi:10.1109/T1E.2018.2833045.
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The main blocks of the proposed system and the
offline training of the compact 1D CNN
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The output of the data processing block over the celll capacitor voltage (channel 2) of
the normal and 2 fault classes (classes 1 and 3) for I,,,4=1A.
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The proposed system architecture for real-time fault detection and
identification after the (offline) training of the 1D CNN..

Real-time Fault Detection and

Class 0 (N)>Class 1 (F1) . R
e Identification
1 Ch.2 Adaptive 1D CNN
| Forward Propagation ’
| D ataProcessmg ___________ Class Decision
4000 5000 6000 7000 8000 5 . 5 ‘R : 7 (;Utf[rjut
: E Segmentation E \ utter
H (N, AN) ! 3
.
ol = .
Bl Final
< @ (t) Output (t-4)
.......................................... ™ = N
Segment (t) .
Ch. 6
1 (t-4) t time
CNN (3000) (4000) (5000) (6000) (7000) (samples)
[N[N]N]N]R]NJF2[F8] N[N[N]N[N[N][N]NJFL|FL[Fe[F2[FL[Fr][FL]FL[Fa][FL]Fa]FL]FL]FL][FL}------ »>
3000 4000 5000 6000 7000 8000 Output X ] Ny X Y /
OFJ?;'H [NINININTNININ]NININ[N]N]N]N]N[NF[FL[FI]FL]FL[FI[FL]FL[FL[FL]FL}-mmernmmeenmmnennnenas >

In the sample data acquisition above, the switch 1 in celll of the MMC circuitry failed
at the sample 5000.
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Computational Complexity

In many applications covered in this study, it has been
shown that 1D CNNs are relatively easier to train and offer
the minimal computational complexity while achieving
state-of-the-art performance levels.

They are especially suitable for mobile or hand-held devices
with limited computation power and battery life.

For instance, specifically for the single-CPU implementation
of ECG arrhythmia detection and identification method, the
total time for a FP of a single beat to obtain the class vector
is about 0.58msec and 0.74msec for 64 and 128 samples
beat resolutions, respectively.

Note that this speed is more than 1000x faster than the
real-time requirement.



For the motor fault detection, the average execution times (in msec) of:

Leftmost bar plot 1: the 1D CNN method, bar plots and competing algorithms [1-4]
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Conclusions

e With a proper systematic approach, compact 1D CNNs can
surpass conventional approaches.

e Compact 1D CNNs provide an advantage for those
applications where labeled data is scarce, and where a low-
cost and real-time implementation is desired.

* |n many applications covered in this study, it has been shown
that 1D CNNs are easier to train and offer the minimal
computational complexity whilst achieving state-of-the-art
performance.

1D CNNs papers are increasingly attracting attention; for
instance, two recent 1D CNN publications cited earlier have
immediately become the most-popular and most-cited
articles in their journals.
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