COMMON MODE PATTERNS FOR SUPERVISED TENSOR SUBSPACE LEARNING International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2019)

K.Makantasis¹, A.Doulamis², N.Doulamis², A.Voulodimos³

¹School of Production Engineering and Management, Technical University of Crete, Chania, Greece ²School of Rural and Surveying Engineering, National Technical University of Athens, Athens, Greece ⁴Department of Informatics and Computer Engineering, University of West Attica, Athens, Greece

High-order Data

Supervised Tensor Subspace Learning

Problem Formulation

CMP Algorithm

High-order Data

Supervised Tensor Subspace Learning

Problem Formulation

CMP Algorithm

High-order data

The order of the data

Zero order \rightarrow scalars

First-order \rightarrow vectors

Second-order \rightarrow matrices

Third-order \rightarrow 3d cubes

High-order data

Advances in sensing technologies

Generation of large amounts of high-order data

High-order Data

Supervised Tensor Subspace Learning

Problem Formulation

CMP Algorithm

- Our algorithm is motivated by Common Spatial Patterns
 - A modification of Karhunen-Loeve expansion
- Extract features that increase inter-class separability
 - A modification of Multilinear Principal Component Analysis

- Our algorithm is motivated by Common Spatial Patterns
 - A modification of Karhunen-Loeve expansion
- Extract features that increase inter-class separability
 - A modification of Multilinear Principal Component Analysis

Our method can be used for **Supervised Dimensionality Reduction** of Tensor objects

- Project data to a lower dimension space
- The explained variance of each class is maximized

To be more rigorous....

• We assume that the **explained variance** of a set of tensor objects

 $\{\mathcal{A}_m\}_{m=1}^M \in \mathbb{R}^{I_1 \times \cdots \times I_N}$ is given by

$$\Psi_{\mathcal{A}} = \frac{1}{M} \sum_{m} \left\| \mathcal{A}_{m} - \bar{\mathcal{A}} \right\|_{\mathrm{F}}^{2}$$

To be more rigorous....

• The projection of \mathcal{A}_m to another tensor $\mathcal{S}_m \in \mathbb{R}^{P_1 \times \cdots \times P_N}$, with $P_n < I_n$ is given by

$$\mathcal{S}_m = \mathcal{A}_m \times_1 U_1^T \times_2 \cdots \times_N U_N^T$$

with $U_n \in \mathbb{R}^{I_n \times P_n}$.

To be more rigorous....

• The projection of \mathcal{A}_m to another tensor $\mathcal{S}_m \in \mathbb{R}^{P_1 \times \cdots \times P_N}$, with $P_n < I_n$ is given by

$$\mathcal{S}_m = \mathcal{A}_m \times_1 U_1^T \times_2 \cdots \times_N U_N^T$$

with $U_n \in \mathbb{R}^{I_n \times P_n}$.

 Using a matrix representation (mode-*n* matricization) the same projection is given by

$$S_{(n),m} = U_n^T \cdot A_{(n),m} U_{\Phi_n}$$

with

$$U_{\Phi_n} = U_{n+1} \otimes \cdots \otimes U_N \otimes U_1 \otimes \cdots \otimes U_{n-1}$$

High-order Data

Supervised Tensor Subspace Learning

Problem Formulation

CMP Algorithm

Problem Formulation

Now we are in a position to define the problem that we are trying to address...

Problem: Estimate set $\{\widetilde{U}_n\}_{n=1}^N$ of projection matrices that satisfy

$$\left\{\widetilde{U}_n\right\}_{n=1}^N = \arg\max_{U_1,\cdots,U_N} \Psi_{\mathcal{S}^{(i)}}$$

for both classes, i.e., i = 1,2, such that the projected samples that belong to different classes will not share common important features.

Problem Formulation

Now we are in a position to define the problem that we are trying to address...

Problem: Estimate set $\{\widetilde{U}_n\}_{n=1}^N$ of projection matrices that satisfy

$$\left\{\widetilde{U}_n\right\}_{n=1}^N = \arg\max_{U_1,\cdots,U_N} \Psi_{\mathcal{S}^{(i)}}$$

for both classes, i.e., i = 1,2, such that the projected samples that belong to different classes will not share common important features.

For solving the problem, first, we have to *sphere* the data. After sphering the data...

High-order Data

Supervised Tensor Subspace Learning

Problem Formulation

CMP Algorithm

CMP Algorithm

... we can proceed with the CMP algorithm.

Theorem: Let $\{\widetilde{U}_n\}_{n=1}^N$ be the solution to our Problem. Then, given all matrices $\widetilde{U}_1, \dots, \widetilde{U}_{n-1}, \widetilde{U}_{n+1}, \dots, \widetilde{U}_N$ the matrix \widetilde{U}_n consists of the $P_n/2$ eigenvectors corresponding to the largest eigenvalues of $\Phi_n^{(1)}$ and the $P_n/2$ eigenvectors corresponding to the largest eigenvalues of $\Phi_n^{(2)}$.

$$\Phi_{n}^{(i)} = \frac{1}{M_{i}} \sum_{m=i}^{M_{i}} \left(A_{(n),m}^{(i)} - \bar{A}_{(n)} \right) \cdot \tilde{U}_{\Phi_{n}} \cdot \tilde{U}_{\Phi_{n}}^{T} \cdot \left(A_{(n),m}^{(i)} - \bar{A}_{(n)} \right)^{T}$$

CMP Algorithm

Based on the previous Theorem the CMP algorithm is as follows

- 1. Sphere the data
- 2. Initialize $\widetilde{U}_n = I_n$
- 3. Repeat

for $n = 1, \cdots, N$

set the columns of \widetilde{U}_n equal to the eigenvectors of $\Phi_n^{(i)}$

Until termination criteria are met

4. For each U_n keep the $P_n/2$ eigenvectors with the largest eigenvalues and $P_n/2$ eigenvectors with the smallest eigenvalues.

High-order Data

Supervised Tensor Subspace Learning

Problem Formulation

CMP Algorithm

Results

- We evaluate our method on a Pavia university hyperspectral dataset.
- The objective is to classify depicted materials into 2 classes
 Manmade objects (*asphalt, metal sheets, bricks and bitumen*)
 Non manmade objects

The Pavia University dataset

- \circ Split the image into overlapping windows of size 5 \times 5 \times c
 - *c* corresponds to the number of bands
- We assume that the label of a patch should be the same with the label of its central pixel
 - This assumption is valid for the vast majority of the pixels
- Reduce the spectral dimension of the patches
 - MPCA with 26 and 10 spectral features
 - CMP with 26, 13, 10, and 5 spectral features
- For the classification we used CNN, Rank-1 FNN and Rank-1 Tensor regression

Results

Overall classification accuracy results (%)

	CNN	Rank-1 FNN	Rank-1 TR
MPCA - 26	85.05	86.80	77.56
CMP - 26	90.41	91.25	77.96
CMP - 13	88.57	88.67	76.90
MPCA - 10	83.49	84.39	77.59
CMP - 10	88.23	88.31	77.52
CMP - 5	86.76	86.27	76.08

- CMP is more efficient than MPCA
 - Exploits labels' information during dimensionality reduction
 - Almost for all employed classifiers

Thanks for your attention