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 mmWave massive MIMO systems 

• Phase shifter based hybrid architecture is widely used to reduce the 

implementation complexity and cost 

• Channel estimation is challenging under this hybrid architecture 

 Why deep learning (DL)? 
• MMSE channel estimation is hindered by the difficulty of acquiring the 

ideal channel covariance matrix and by the high computational complexity 

due to the large antenna dimension 

• Compressive sensing based methods perform unsatisfactorily in the 

practical complicated channel and also suffer from high complexity caused 

by iterations 

• DL is more capable to extract the inherent characteristics underlying the 

channel from the large amount of data and provides the potential to 

estimate the channel more accurately with lower complexity by using the 

efficient parallel computing methods 

 

Background and Motivation 
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 Transmitter and receiver 

 

 

 

 

 Channel model 
• The delay domain channel from the BS to the user is denoted as 

        𝐇 𝝉 =
𝑁B𝑁U

𝐿
 𝛼𝑙𝛿 𝜏 − 𝜏𝑙 𝐚U 𝜑𝑙 𝐚B

𝐻 𝜙𝑙
𝐿
𝑙=1                       (1) 

 L is the number of paths, 𝛼𝑙 and 𝜏𝑙 are the propagation gain and delay of the 

lth path, 𝜑𝑙 and 𝜙𝑙 are the AoA and AoD at the user and the BS of the lth path 

• The frequency domain channel of the kth subcarrier in OFDM is  

    𝐇𝑘 =
𝑁B𝑁U

𝐿
 𝛼𝑙𝑒

−𝑗2𝜋𝜏𝑙𝑓𝑠
𝑘

𝐾𝐚U 𝜑𝑙 𝐚B
𝐻 𝜙𝑙

𝐿
𝑙=1                           (2) 

 fs denotes the sampling rate and K is the number of OFDM subcarriers 
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Fig. 1. System model. 
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 Signal model for channel estimation 

• To estimate 𝐇𝑘, the BS transmits pilot signal 𝑥𝑘,𝑢 on the 

beamforming vector 𝐟𝑘,𝑢 ∈ ℂ𝑁B×1, 𝑢 = 1,⋯ ,𝑀B, during 𝑀B successive 

instants and the user employs 𝑀U combining vectors 𝐰𝑘,𝑣 ∈ ℂ𝑁U×1, 

𝑣 = 1,⋯ ,𝑀U, to process each beamforming vector. 

• The received pilots associated with the kth subcarrier after 

combining at the user is written as  

    𝐘𝑘 = 𝐖𝑘
𝐻𝐇𝑘𝐅𝑘𝐗𝑘 + 𝐍 𝑘 ,                                           (3) 

 𝐖𝑘 = 𝐰𝑘,1, ⋯ ,𝐰𝑘,𝑀U
  and 𝐅𝑘 = 𝐟𝑘,1, ⋯ , 𝐟𝑘,𝑀B

 are combining matrix and 

beamforming matrix, respectively 

 𝐗𝑘 is an 𝑀B ×𝑀B diagonal matrix with its uth diagonal element being 𝑥𝑘,𝑢 

 𝐍 𝑘 = 𝐖𝑘
𝐻𝐍𝑘 denotes the effective noise after combining at the user and 

𝐍𝑘 is additive white Gaussian noise (AWGN) before combining 

System Model 
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 Signal preprocessing 

• Assume the worst case that 𝐖𝑘 = 𝐖, 𝐅𝑘 = 𝐅, and 𝐗𝑘 = 𝑃𝐈 for all 

subcarriers with pilots 

• The received pilot matrix, 𝐘𝑘, is vectorized as 

𝐲 𝑘 = vec 𝐘𝑘 = 𝑃 𝐅𝑇⨂𝐖𝐻 vec 𝐇𝑘 + vec 𝐍 𝑘  

                           = 𝐐𝐡 𝑘+𝐧 𝑘                                                                 (4) 

 Specifically, 𝐐 = 𝑃 𝐅𝑇⨂𝐖𝐻 , 𝐡 𝐤 = vec 𝐇𝐤 , 𝐧 𝐤 = vec 𝐍 𝐤  

• 𝐲 𝑘 is further processed and we can obtain the processed pilot 

matrix at subcarrier k as 

𝐑𝑘 = vec−1 𝐫 𝑘 = vec−1 𝐐†𝐲 𝑘                                (5) 

• The processed pilot matrices at S successive subcarriers, 

𝐑𝑘0 , 𝐑𝑘0+1, ⋯ , 𝐑𝑘0+𝑆−1, within one coherence bandwidth will be input 

into the CNN simultaneously for joint channel estimation 

CNN based Channel Estimation 
-Algorithm Description 
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 CNN offline training 

• Training set: the nth sample has the form of 𝐑𝑛, 𝐇𝑛 , where 

𝐑𝑛, 𝐇𝑛 ∈ ℂ𝑁U×𝑁B×𝑆 are the input and target data, respectively, and  

the sth 2D matrices are 𝐑𝑘0+𝑠−1
𝑛  and 

𝐇𝑘0+𝑠−1
𝑛

𝑐
, respectively. 𝐑𝑘0+𝑠−1

𝑛  is 

the processed pilot matrix at subcarrier 𝑘0 + 𝑠 − 1 given by (5) and 

𝐇𝑘0+𝑠−1
𝑛  is the corresponding true channel matrix. 𝑐 > 0 is a scaling 

constant to make the value range of the vast majority of target 

data match the activation function. 

• Basic idea of offline training: Input the tentatively estimated 

channel matrices of S subcarriers, 𝐑𝑛, into the CNN to 

approximate the corresponding scaled true channels 𝐇𝑛. Minimize 

the MSE loss function over all training samples as 

MSELoss =
1

𝑁tr𝑐2
  𝐇𝑘0+𝑠−1

𝑛 − 𝐇 𝑘0+𝑠−1
𝑛

𝐹

2𝑆
𝑠=1

𝑁tr
𝑛=1                  (6) 

CNN based Channel Estimation 
-Algorithm Description 
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 Illustration for offline training 

 

 

 

 

 

• 𝑁B = 𝑀B = 32, 𝑁U = 𝑀U = 16, 𝑆 = 2 

• 𝐑𝑘0
𝑛 , 𝐑𝑘0+1

𝑛  with separated real and imaginary parts are input into CNN 

• They are processed by 9 zero padding convolutional layers with ReLU 

and batch normalization and the output layer with tangent function 

• CNN outputs the estimated real and imaginary parts of the scaled 

channel matrices. Then 𝐇 𝑘0
𝑛  and 𝐇 𝑘0+1

𝑛  can be obtained 

• Calculate MSE in (6) and minimize it for each epoch 

CNN based Channel Estimation 
-Algorithm Description 
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Fig. 2. Proposed CNN for joint channel estimation. 
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 Online testing 

• After the centralized training, the CNN will be deployed at the receiver to 
obtain the estimated channel matrices, 𝐇 𝑘0 , 𝐇

 
𝑘0+1

, ⋯ , 𝐇 𝑘0+𝑆−1, by jointly 

processing the pilot matrices, 𝐑𝑘0
, 𝐑𝑘0+1

, ⋯ , 𝐑𝑘0+𝑆−1
. 

 Channel statistic mismatch between training and testing 

• If the actual channel model differs from that in the training stage, a 

straightforward solution is fine-tuning but it is hindered by the 

difficulty to collect the true channel.  

• The offline trained CNN is quite robust to the new channel statistics 

that are not observed before, which implies that further online fine-

tuning might only provide marginal performance improvement and 

hence is not necessary. 

CNN based Channel Estimation 
-Algorithm Description 
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 Complexity of CNN based approach 

• Metric: floating point operations (FLOPs) 

• Complexity of preprocessing in (4) and (5): 

𝐶CNN,1~𝒪 𝑆𝑁B
2𝑁U

2                                                           (7) 

• Complexity of CNN testing: 

𝐶CNN,2~𝒪  𝑀1,𝑙𝑀2,𝑙𝐹𝑙
2𝑁𝑙−1𝑁𝑙

𝐿𝑐
𝑙=1                                         (8) 

• The total complexity of proposed CNN based approach: 

𝐶CNN~𝒪 𝑆𝑁B
2𝑁U

2 +  𝑀1,𝑙𝑀2,𝑙𝐹𝑙
2𝑁𝑙−1𝑁𝑙

𝐿𝑐
𝑙=1                               (9) 

 

CNN based Channel Estimation 
-Complexity analysis 
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 Complexity of MMSE channel estimation 

• Complexity of least square (LS) channel estimation: 

𝐶MMSE,1~𝒪 𝑆𝑁B
2𝑁U

2                                                        (10) 

• Complexity of refining the LS channel estimation: 

𝐶MMSE,2~𝒪 𝑆3𝑁B
3𝑁U

3                                                      (11) 

• The total complexity of MMSE channel estimation: 

𝐶MMSE~𝒪 𝑆3𝑁B
3𝑁U

3                                                      (12) 

 CNN based approach vs. MMSE 

 

 

 

• 𝐶CNN~𝒪 108 , 𝐶MMSE~𝒪 109  

CNN based Channel Estimation 
-Complexity analysis 

𝑙 𝑀1,𝑙 𝑀2,𝑙 𝐹𝑙 𝑁𝑙−1 𝑁𝑙 

1 16 32 3 4 64 

2~9 16 32 3 64 64 

10 16 32 3 64 4 
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 Simulation settings 

• System parameters: 

 Channel model: 3GPP TR 38.901 

Release 15 

Simulation Results 

Parameter Setting value 

𝑁B, 𝑀B 32 

𝑁U, 𝑀U 16 

fc 28GHz 

K 64 

fs 100MHz 

L 3 

 

• CNN settings: 

Settings for proposed NN 

Training set 81,000 

Validation set 9,000 

Testing set 19,000 

Optimizer adam 

Epochs 800 

Learning rate 10-4 (200 epochs)→5×10-5 (400 

epochs) →10-5 (200 epochs) 

Batch size 128 

CNN structure Layer 1: 64@3×3×4(Relu) 

Layer 2~9: 64@3×3×64 (Relu) 

Layer 10: 4@3×3×64 (tanh) 

S 2 

c 2 
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 Normalized Mean-Squared Error Performance: 
 

Simulation Results 

Fig. 3. NMSE versus transmit SNR for the proposed CNN 

based channel estimation and the existing methods. 

Urban micro (UMi) street non-

line of sight (NLOS) scenario 

Frequency correlation is helpful 

to improve the channel 

estimation accuracy 

Through offline training, the 

CNN based channel estimation 

outperforms the non-ideal 

MMSE with estimated 

covariance matrix significantly 

yet requiring lower estimation 

complexity 

The performance of the CNN 

based approach is very close to 

the ideal MMSE with true 

covariance matrix, especially at 

the low and medium SNRs 
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 Normalized Mean-Squared Error Performance: 
 

Simulation Results 

Fig. 4. Robustness for different scenarios. 

CNN:  

   Training in UMi scenario 

   Testing in both UMi and urban   

   macro (UMa) scenarios 

MMSE: 

   Estimating covariance matrix in   

   UMi scenario 

   Estimating channel matrix both  

   UMi and UMa scenarios 

CNN based channel estimation 

exhibits good robustness when 

facing the significantly different 

channel statistics. Even under the 

mismatched UMa NLOS scenario, 

the CNN based approach still 

outperforms the non-ideal MMSE 

without mismatch. 
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 We propose a deep CNN based joint channel estimation 

approach over multiple adjacent subcarriers for mmWave 

massive MIMO-OFDM systems.  

 The proposed approach is with reduced complexity but 

outperforms the non-ideal MMSE and is close to the ideal 

MMSE.  

 In the case with channel statistics mismatch, the proposed 

approach exhibits good robustness and outperforms the 

mismatched ideal and non-ideal MMSE significantly. 
 

Conclusions 
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Thank you for listening! 


