
Modeling nonlinear audio effects with

end-to-end deep neural networks

Marco A. Mart́ınez Raḿırez, Joshua D. Reiss

May 16, 2019



Deep learning architectures for audio processing

We research deep learning architectures for audio processing in the

context of audio effects modeling.

Audio effects modeling is the process of emulating the sound of an

analog reference device.

We aim to find a general-purpose deep learning architecture for

generic black-box modeling of nonlinear and linear audio effects.

1



Deep learning architectures for audio processing

We research deep learning architectures for audio processing in the

context of audio effects modeling.

Audio effects modeling is the process of emulating the sound of an

analog reference device.

We aim to find a general-purpose deep learning architecture for

generic black-box modeling of nonlinear and linear audio effects.

1



Deep learning architectures for audio processing

We research deep learning architectures for audio processing in the

context of audio effects modeling.

Audio effects modeling is the process of emulating the sound of an

analog reference device.

We aim to find a general-purpose deep learning architecture for

generic black-box modeling of nonlinear and linear audio effects.

1



Nonlinear audio effects

Nonlinear audio effects are widely used by musicians and sound

engineers.

Mainly used for aesthetic reasons and are usually applied to electric

musical instruments.

The nonlinear behaviour of circuit components leads to amplitude

and harmonic distortion.

Most common nonlinear effects:

• distortion, overdrive, amplifiers

2



Nonlinear audio effects

Nonlinear audio effects are widely used by musicians and sound

engineers.

Mainly used for aesthetic reasons and are usually applied to electric

musical instruments.

The nonlinear behaviour of circuit components leads to amplitude

and harmonic distortion.

Most common nonlinear effects:

• distortion, overdrive, amplifiers

2



Nonlinear audio effects

Nonlinear audio effects are widely used by musicians and sound

engineers.

Mainly used for aesthetic reasons and are usually applied to electric

musical instruments.

The nonlinear behaviour of circuit components leads to amplitude

and harmonic distortion.

Most common nonlinear effects:

• distortion, overdrive, amplifiers

2



Nonlinear audio effects

Nonlinear audio effects are widely used by musicians and sound

engineers.

Mainly used for aesthetic reasons and are usually applied to electric

musical instruments.

The nonlinear behaviour of circuit components leads to amplitude

and harmonic distortion.

Most common nonlinear effects:

• distortion, overdrive, amplifiers

2



Nonlinear audio effects modeling

Most existing methods for nonlinear modeling are often either

simplified or optimized to a very specific circuit.

Difficult to generalize the methods among different audio effects.

Accentuated when we consider that each effect unit also contains

components other than the nonlinearity.

3



Nonlinear audio effects modeling

Most existing methods for nonlinear modeling are often either

simplified or optimized to a very specific circuit.

Difficult to generalize the methods among different audio effects.

Accentuated when we consider that each effect unit also contains

components other than the nonlinearity.

3



Nonlinear audio effects modeling

Most existing methods for nonlinear modeling are often either

simplified or optimized to a very specific circuit.

Difficult to generalize the methods among different audio effects.

Accentuated when we consider that each effect unit also contains

components other than the nonlinearity.

3



Aim

Given an arbitrary nonlinear audio effect, our task is to train a

deep neural network to learn and apply the specific transformation.

Using an end-to-end architecture, where raw audio is both the

input and the output of the system.

We show the model performing nonlinear modeling:

• distortion

• overdrive

• amplifiers

• combinations of linear and nonlinear audio effects

4



Aim

Given an arbitrary nonlinear audio effect, our task is to train a

deep neural network to learn and apply the specific transformation.

Using an end-to-end architecture, where raw audio is both the

input and the output of the system.

We show the model performing nonlinear modeling:

• distortion

• overdrive

• amplifiers

• combinations of linear and nonlinear audio effects

4



Aim

Given an arbitrary nonlinear audio effect, our task is to train a

deep neural network to learn and apply the specific transformation.

Using an end-to-end architecture, where raw audio is both the

input and the output of the system.

We show the model performing nonlinear modeling:

• distortion

• overdrive

• amplifiers

• combinations of linear and nonlinear audio effects

4



Dataset

The audio is obtained from IDMT-SMT-Audio-Effects.

Individual 2-second notes of guitars and bass.

We use unprocessed and processed recordings with distortion,

overdrive and amplifier emulation (EQ).

We also apply a custom audio effects chain (FxChain):

• lowshelf filter (gain=+20dB)

• highshelf filter (gain=-20dB)

• overdrive (gain=+30dB)

We use 624 raw and distorted notes for each audio effect setting.

5



Dataset

The audio is obtained from IDMT-SMT-Audio-Effects.

Individual 2-second notes of guitars and bass.

We use unprocessed and processed recordings with distortion,

overdrive and amplifier emulation (EQ).

We also apply a custom audio effects chain (FxChain):

• lowshelf filter (gain=+20dB)

• highshelf filter (gain=-20dB)

• overdrive (gain=+30dB)

We use 624 raw and distorted notes for each audio effect setting.

5



Dataset

The audio is obtained from IDMT-SMT-Audio-Effects.

Individual 2-second notes of guitars and bass.

We use unprocessed and processed recordings with distortion,

overdrive and amplifier emulation (EQ).

We also apply a custom audio effects chain (FxChain):

• lowshelf filter (gain=+20dB)

• highshelf filter (gain=-20dB)

• overdrive (gain=+30dB)

We use 624 raw and distorted notes for each audio effect setting.

5



Dataset

The audio is obtained from IDMT-SMT-Audio-Effects.

Individual 2-second notes of guitars and bass.

We use unprocessed and processed recordings with distortion,

overdrive and amplifier emulation (EQ).

We also apply a custom audio effects chain (FxChain):

• lowshelf filter (gain=+20dB)

• highshelf filter (gain=-20dB)

• overdrive (gain=+30dB)

We use 624 raw and distorted notes for each audio effect setting.

5



Dataset

The audio is obtained from IDMT-SMT-Audio-Effects.

Individual 2-second notes of guitars and bass.

We use unprocessed and processed recordings with distortion,

overdrive and amplifier emulation (EQ).

We also apply a custom audio effects chain (FxChain):

• lowshelf filter (gain=+20dB)

• highshelf filter (gain=-20dB)

• overdrive (gain=+30dB)

We use 624 raw and distorted notes for each audio effect setting.

5



Model

Conv1D Conv1D
Local

Max
Pool

Adaptive Front-end

DNN

deConv1DUnpool

Synthesis Back-end

Input audio

Target audio
DNN
SAAF

6



Training

Conv1D Conv1D 
Local

Max 
Pool

Adaptive Front-end

DNN deConv1DUnpool

Synthesis Back-end

Input audio Target audio 
DNN 
SAAF

The training of the model is performed in two steps.

• The first step is to train only the convolutional layers for an

unsupervised learning task.

• The second step consists of an end-to-end supervised learning

task based on a given nonlinear target.

* The loss function to be minimized is the mean absolute error.

* Input and Target are 1024 samples with hop size of 64 samples.

7



Training

Conv1D Conv1D 
Local

Max 
Pool

Adaptive Front-end

DNN deConv1DUnpool

Synthesis Back-end

Input audio Target audio 
DNN 
SAAF

The training of the model is performed in two steps.

• The first step is to train only the convolutional layers for an

unsupervised learning task.

• The second step consists of an end-to-end supervised learning

task based on a given nonlinear target.

* The loss function to be minimized is the mean absolute error.

* Input and Target are 1024 samples with hop size of 64 samples.

7



Training

Conv1D Conv1D 
Local

Max 
Pool

Adaptive Front-end

DNN deConv1DUnpool

Synthesis Back-end

Input audio Target audio 
DNN 
SAAF

The training of the model is performed in two steps.

• The first step is to train only the convolutional layers for an

unsupervised learning task.

• The second step consists of an end-to-end supervised learning

task based on a given nonlinear target.

* The loss function to be minimized is the mean absolute error.

* Input and Target are 1024 samples with hop size of 64 samples.

7



Training

Conv1D Conv1D 
Local

Max 
Pool

Adaptive Front-end

DNN deConv1DUnpool

Synthesis Back-end

Input audio Target audio 
DNN 
SAAF

The training of the model is performed in two steps.

• The first step is to train only the convolutional layers for an

unsupervised learning task.

• The second step consists of an end-to-end supervised learning

task based on a given nonlinear target.

* The loss function to be minimized is the mean absolute error.

* Input and Target are 1024 samples with hop size of 64 samples.

7



Results - unsupervised learning

Conv1D Conv1D 
Local

Max 
Pool

Adaptive Front-end

DNN deConv1DUnpool

Synthesis Back-end

Input audio Target audio 
DNN 
SAAF

Conv1D filters 8



Results - unsupervised learning

Conv1D Conv1D 
Local

Max 
Pool

Adaptive Front-end

DNN deConv1DUnpool

Synthesis Back-end

Input audio Target audio 
DNN 
SAAF

X1
9



Results - unsupervised learning

Conv1D Conv1D 
Local

Max 
Pool

Adaptive Front-end

DNN deConv1DUnpool

Synthesis Back-end

Input audio Target audio 
DNN 
SAAF

Z
10



Results - unsupervised learning

Conv1D Conv1D 
Local

Max 
Pool

Adaptive Front-end

DNN deConv1DUnpool

Synthesis Back-end

Input audio Target audio 
DNN 
SAAF

X̂1
11



Results - unsupervised learning

12



Model

Conv1D Conv1D 
Local

Max 
Pool

Adaptive Front-end

DNN deConv1DUnpool

Synthesis Back-end

Input audio Target audio 
DNN 
SAAF

• Latent-space DNN

- Locally connected dense layer.

- Fully connected dense layer.

* Mart́ınez Raḿırez M. A. and Reiss J. D., ”End-to-end equalization with
convolutional neural networks”, 21st International Conference on Digital

Audio Effects (DAFx-18).

13



Model

Conv1D Conv1D 
Local

Max 
Pool

Adaptive Front-end

DNN deConv1DUnpool

Synthesis Back-end

Input audio Target audio 
DNN 
SAAF

• Latent-space DNN

- Locally connected dense layer.

- Fully connected dense layer.

* Mart́ınez Raḿırez M. A. and Reiss J. D., ”End-to-end equalization with
convolutional neural networks”, 21st International Conference on Digital

Audio Effects (DAFx-18).

13



Model

Conv1D Conv1D 
Local

Max 
Pool

Adaptive Front-end

DNN deConv1DUnpool

Synthesis Back-end

Input audio Target audio 
DNN 
SAAF

• Latent-space DNN

- Locally connected dense layer.

- Fully connected dense layer.

* Mart́ınez Raḿırez M. A. and Reiss J. D., ”End-to-end equalization with
convolutional neural networks”, 21st International Conference on Digital

Audio Effects (DAFx-18).

13



DNN-SAAF

Conv1D Conv1D 
Local

Max 
Pool

Adaptive Front-end

DNN deConv1DUnpool

Synthesis Back-end

Input audio Target audio 
DNN 
SAAF

• Smooth adaptive activation functions (SAAF)

- Locally connected.

- Piecewise second order polynomials which can approximate

any continuous function

- Regularized under a Lipschitz constant to ensure smoothness.

14



DNN-SAAF

Conv1D Conv1D 
Local

Max 
Pool

Adaptive Front-end

DNN deConv1DUnpool

Synthesis Back-end

Input audio Target audio 
DNN 
SAAF

• Smooth adaptive activation functions (SAAF)

- Locally connected.

- Piecewise second order polynomials which can approximate

any continuous function

- Regularized under a Lipschitz constant to ensure smoothness.

14



DNN-SAAF

Conv1D Conv1D 
Local

Max 
Pool

Adaptive Front-end

DNN deConv1DUnpool

Synthesis Back-end

Input audio Target audio 
DNN 
SAAF

• Smooth adaptive activation functions (SAAF)

- Locally connected.

- Piecewise second order polynomials which can approximate

any continuous function

- Regularized under a Lipschitz constant to ensure smoothness.

14



DNN-SAAF

Conv1D Conv1D 
Local

Max 
Pool

Adaptive Front-end

DNN deConv1DUnpool

Synthesis Back-end

Input audio Target audio 
DNN 
SAAF

• Smooth adaptive activation functions (SAAF)

[1]

[1] Le Hou et al., Convnets with smooth adaptive activation functions for regression, in Artificial

Intelligence and Statistics, 2017.

15



Results - distortion - bass guitar

0.00 0.01 0.02 0.03 0.04 0.05 0.06
time

0.10

0.05

0.00

0.05

0.10

0.15
am

pl
itu

de
input
target
output

102 103 104

frequency (Hz)

10 5

10 4

10 3

10 2

m
ag

ni
tu

de

input
target
output

16



Results - distortion - bass guitar

• input

• target

• output

0
64

128
256
512

1024
2048
4096

Hz

0
64

128
256
512

1024
2048
4096

Hz

0 0.15 0.3 0.45 0.6 0.75 0.9 1.1 1.2 1.4 1.5
time (s)

0
64

128
256
512

1024
2048
4096

Hz

17



Results - distortion - waveshaping curves

• 1st setting

• 2nd setting

• 3rd setting

0.020 0.015 0.010 0.005 0.000 0.005 0.010 0.015

0.2

0.1

0.0

0.1

0.2 input-target-ratio

0.020 0.015 0.010 0.005 0.000 0.005 0.010 0.015

0.2

0.1

0.0

0.1

0.2 input-output-ratio

0.03 0.02 0.01 0.00 0.01 0.02

0.2

0.1

0.0

0.1

0.2 input-target-ratio

0.03 0.02 0.01 0.00 0.01 0.02

0.2

0.1

0.0

0.1

0.2 input-output-ratio

0.020 0.015 0.010 0.005 0.000 0.005 0.010 0.015

0.2

0.1

0.0

0.1

0.2 input-target-ratio

0.020 0.015 0.010 0.005 0.000 0.005 0.010 0.015

0.2

0.1

0.0

0.1

0.2 input-output-ratio

18



Results - overdrive - electric guitar

0.00 0.01 0.02 0.03 0.04 0.05 0.06
time

0.3
0.2
0.1
0.0
0.1
0.2
0.3

am
pl

itu
de

input
target
output

102 103 104

frequency (Hz)

10 4

10 3

10 2

10 1

m
ag

ni
tu

de

input
target
output

19



Results - overdrive - electric guitar

• input

• target

• output

0
64

128
256
512

1024
2048
4096

Hz

0
64

128
256
512

1024
2048
4096

Hz

0 0.15 0.3 0.45 0.6 0.75 0.9 1.1 1.2 1.4 1.5
time (s)

0
64

128
256
512

1024
2048
4096

Hz

20



Results - overdrive - waveshaping curves

• 1st setting

• 2nd setting

• 3rd setting

0.010 0.005 0.000 0.005 0.010

0.2

0.1

0.0

0.1

0.2 input-target-ratio

0.010 0.005 0.000 0.005 0.010

0.2

0.1

0.0

0.1

0.2 input-output-ratio

0.03 0.02 0.01 0.00 0.01 0.02
0.3

0.2

0.1

0.0

0.1

0.2

0.3 input-target-ratio

0.03 0.02 0.01 0.00 0.01 0.02
0.3

0.2

0.1

0.0

0.1

0.2

0.3 input-output-ratio

0.020 0.015 0.010 0.005 0.000 0.005

0.2

0.1

0.0

0.1

0.2 input-target-ratio

0.020 0.015 0.010 0.005 0.000 0.005

0.2

0.1

0.0

0.1

0.2 input-output-ratio

21



Results - amplifier emulation (EQ) - electric guitar

0.00 0.01 0.02 0.03 0.04 0.05 0.06
time

0.2

0.1

0.0

0.1

0.2
am

pl
itu

de
input
target
output

102 103 104

frequency (Hz)

10 6

10 5

10 4

10 3

10 2

m
ag

ni
tu

de

input
target
output

22



Results - amplifier emulation (EQ) - electric guitar

• input

• target

• output

0
64

128
256
512

1024
2048
4096

Hz

0
64

128
256
512

1024
2048
4096

Hz

0 0.15 0.3 0.45 0.6 0.75 0.9 1.1 1.2 1.4 1.5
time (s)

0
64

128
256
512

1024
2048
4096

Hz

23



Results - FxChain - bass guitar

0.00 0.01 0.02 0.03 0.04 0.05 0.06
time

0.6

0.4

0.2

0.0

0.2

0.4

0.6
am

pl
itu

de
input
target
output

102 103 104

frequency (Hz)
10 6

10 5

10 4

10 3

10 2

10 1

m
ag

ni
tu

de

input
target
output

24



Results - FxChain - bass guitar

• input

• target

• output

0
64

128
256
512

1024
2048
4096

Hz

0
64

128
256
512

1024
2048
4096

Hz

0 0.15 0.3 0.45 0.6 0.75 0.9 1.1 1.2 1.4 1.5
time (s)

0
64

128
256
512

1024
2048
4096

Hz

25



Conclusion

Complex nonlinearities with attack, release and filtering settings

were correctly modeled by the network.

Generalization capabilities among instruments and optimization

towards an specific instrument were found among the trained

models.

We introduced a general-purpose deep learning architecture for

generic black-box modeling of nonlinear and linear audio effects.

26



Conclusion

Complex nonlinearities with attack, release and filtering settings

were correctly modeled by the network.

Generalization capabilities among instruments and optimization

towards an specific instrument were found among the trained

models.

We introduced a general-purpose deep learning architecture for

generic black-box modeling of nonlinear and linear audio effects.

26



Conclusion

Complex nonlinearities with attack, release and filtering settings

were correctly modeled by the network.

Generalization capabilities among instruments and optimization

towards an specific instrument were found among the trained

models.

We introduced a general-purpose deep learning architecture for

generic black-box modeling of nonlinear and linear audio effects.

26



Future work

Further generalization could be explored.

- Regularizers

- Training data with a wider range of instruments.

Exploration of RNNs to model effects with long-term memory;

- Mart́ınez Raḿırez M. A., Benetos E. and Reiss J. D., ”A general-purpose
deep learning approach to model time-varying audio effects”, arXiv

preprint

Real-time implementations.

27



Future work

Further generalization could be explored.

- Regularizers

- Training data with a wider range of instruments.

Exploration of RNNs to model effects with long-term memory;

- Mart́ınez Raḿırez M. A., Benetos E. and Reiss J. D., ”A general-purpose
deep learning approach to model time-varying audio effects”, arXiv

preprint

Real-time implementations.

27



Future work

Further generalization could be explored.

- Regularizers

- Training data with a wider range of instruments.

Exploration of RNNs to model effects with long-term memory;

- Mart́ınez Raḿırez M. A., Benetos E. and Reiss J. D., ”A general-purpose
deep learning approach to model time-varying audio effects”, arXiv

preprint

Real-time implementations.

27



Future work

Further generalization could be explored.

- Regularizers

- Training data with a wider range of instruments.

Exploration of RNNs to model effects with long-term memory;

- Mart́ınez Raḿırez M. A., Benetos E. and Reiss J. D., ”A general-purpose
deep learning approach to model time-varying audio effects”, arXiv

preprint

Real-time implementations.

27



Thank you.

https://mchijmma.github.io/modeling-nonlinear/

www.m-marco.com

27


