Second Order Sequential Best Rotation Algorithm with Householder Reduction for Polynomial Matrix Eigenvalue Decomposition

Imperial College London

Vincent W. Neo, Patrick A. Naylor 16 May 2019

SBR2 with Householder Reduction for PEVD - 1/25

Outline

1. Introduction

Motivation for PEVD Polynomial Matrices PEVD

- 2. Proposed Method Householder Reduction
- 3. Simulations and Results Experiment Setup Single Example Results of Monte-Carlo Simulation
- 4. Conclusion

Imperial College

London

Introduction

Introduction

SBR2 with Householder Reduction for PEVD - 3/25

Motivation for PEVD

- EVD of Hermitian matrices is commonly used in
 - subspace decomposition for data compression
 - blind source separation
 - adaptive beamforming
 - \Rightarrow Assumption: Sources are narrowband
- Broadband signals need to model the correlation between sensor pairs across different time lags
 - \longrightarrow Polynomial matrices
- Development of PEVD algorithms and applications in
 - subspace decomposition using polynomial MUSIC [1]
 - blind source separation [2]
 - adaptive beamforming [3]
 - source identification [4]

The data vector at time index \boldsymbol{n} collected from $\boldsymbol{M}\text{-sensors}$ is

$$\mathbf{x}(n) = [x_1(n), x_2(n), \dots, x_M(n)]^T \in \mathbb{C}^M$$

The space-time covariance matrix for N time snapshots is

$$\mathbf{A}(\tau) = \mathbb{E}\{\mathbf{x}(n)\mathbf{x}^{H}(n-\tau)\} \approx \frac{1}{N} \sum_{n=0}^{N-1} \mathbf{x}(n)\mathbf{x}^{H}(n-\tau) \in \mathbb{C}^{M \times M},$$

and its z-transform is a para-Hermitian polynomial matrix,

$$\mathbf{A}(z) = \sum_{\tau = -W}^{W} \mathbf{A}(\tau) z^{-\tau}.$$

Polynomial Eigenvalue Decomposition

Imperial College London

The PEVD of $\mathbf{A}(z)$ according to [5] is

 $\mathbf{A}(z) \approx \mathbf{U}(z) \mathbf{\Lambda}(z) \mathbf{U}^{P}(z),$

where

- $\mathbf{U}^{P}(z) = \mathbf{U}^{H}(z^{-1})$,
- $\Lambda(z)$ is the eigenvalue polynomial matrix and
- $\mathbf{U}(z)$ is the eigenvector polynomial matrix, such that $\mathbf{U}(z) = \mathbf{U}_L(z) \dots \mathbf{U}_2(z) \mathbf{U}_1(z),$

constructed using L para-unitary polynomial matrices.

Comparison between EVD and PEVD

Imperial College London

Comparison between EVD and PEVD

Imperial College London

Introduction

SBR2 Algorithm [5]

Imperial College London

At each iteration, SBR2 will

- (i) search for the largest off-diagonal, |g|,
- (ii) delay and bring $\left|g\right|$ to the zero-lag plane,
- (iii) zero |g| using a Givens rotation and
- (iv) trim negligible high order terms.

z⁻³ z³ (i) (ii) 0" (0 "* (iii) 05.0 1.05.0-1.5 S (iv)11.5 01 . 05 ...05 (...05 .0.

Family of PEVD Algorithms

SBR2 provided a framework for extensions based on (i)-(iv).

- (i) search: norm-2 instead of inf-norm
 - Householder-like PEVD [6]
 - sequential matrix diagonalisation (SMD) [7]
- (ii) delay: multiple-shift (MS) instead of single-shift
 - MS-SBR2 [8]
 - MS-SMD [9]
- (iii) zero: one-step diagonalisation of \boldsymbol{z}^0 instead of using the Givens rotation
 - SMD [7]
 - Householder-like PEVD [6]
 - approximate PEVD [10].

(iv) trim: row-shifted truncation SMD [11].

Proposed Method

SBR2 with Householder Reduction for PEVD - 11/25

Jacobi's Method for Symmetric EVD

Consider the principal plane of a polynomial matrix, $A(z^0) \in \mathbb{C}^{M \times M}.$

$a_{1,1}$	$a_{1,2}$	$a_{1,3}$	$a_{1,4}$		$a_{1,M}$
$a_{2,1}$	$a_{2,2}$	$a_{2,3}$	$a_{2,4}$		$a_{2,M}$
$a_{3,1}$	$a_{3,2}$	$a_{3,3}$	$a_{3,4}$		$a_{3,M}$
:	÷	÷	·	14.	÷
$a_{M-1,1}$	$a_{M-1,2}$	$a_{M-1,3}$		$a_{M-1,M-1}$	$a_{M-1,M}$
$a_{M,1}$	$a_{M,2}$	$a_{M,3}$		$a_{M,M-1}$	$a_{M,M}$

 \Rightarrow Cycling through all off-diagonal elements using Jacobi's algorithm requires $\frac{M(M-1)}{2}$ Givens rotations.

(M-1) Householder reflections first reduce the principal plane to tridiagonal form [12].

 $\begin{bmatrix} a_{1,1} & a_{1,2} & 0 & \dots & 0 \\ a_{2,1} & a_{2,2} & a_{2,3} & 0 & \dots & \vdots \\ 0 & a_{3,2} & a_{3,3} & a_{3,4} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \dots & \ddots & \ddots & a_{M-1,M-1} & a_{M-1,M} \\ 0 & \dots & \dots & a_{M,M-1} & a_{M,M} \end{bmatrix}$

⇒ In this reduced form, there are fewer elements to zero. ⇒ Cycling through all off-diagonal elements uses (M - 2)Householder reflections followed by (M - 1) Givens rotations.

Householder Reduction in EVD

Comparison of diagonalisation using Householder + Givens (HG) and Givens-only (G) using 1000 randomly generated symmetric matrices for every M with $\delta \leq \sqrt{N_1/3} \times 10^{-2}$.

 \Rightarrow The reduction in L achieved by Householder + Givens over Givens-only method scales with matrix dimension, M.

SBR2 with Householder Reduction

Inputs:
$$\mathbf{A}(z) \in \mathbb{C}^{M \times M}$$
, δ , maxIter, μ .
initialise: $l \leftarrow 0$, $\mathbf{g} \leftarrow 1 + \delta$, $\tilde{\mathbf{A}}(z) = \mathbf{A}(z)$, $\tilde{\mathbf{U}}(z) = \mathbf{I}$.
while $(l < \max | r_{jk}(z^t) |, k > j$, $\forall t$.
if $(\mathbf{g} > \delta)$ then
 $l \leftarrow l + 1$.
 $\tilde{\mathbf{A}}(z) \leftarrow \mathbf{D}_j(z)\tilde{\mathbf{A}}(z)\mathbf{D}_j^P(z)$,
 $\tilde{\mathbf{U}}(z) \leftarrow \mathbf{D}_j(z)\tilde{\mathbf{U}}(z) // delay$
 $\tilde{\mathbf{A}}(z) \leftarrow \mathbf{H}\tilde{\mathbf{A}}(z)\mathbf{H}^H$
 $\tilde{\mathbf{U}}(z) \leftarrow \mathbf{H}\tilde{\mathbf{U}}(z) // reflect$
 $\tilde{\mathbf{A}}(z) \leftarrow \mathbf{G}(\theta, \phi)\tilde{\mathbf{A}}(z)\mathbf{G}^H(\theta, \phi)$,
 $\tilde{\mathbf{U}}(z) \leftarrow \operatorname{trim}(\tilde{\mathbf{A}}(z), \mu)$,
 $\tilde{\mathbf{U}}(z) \leftarrow \operatorname{trim}(\tilde{\mathbf{U}}(z), \mu) // trim.$
end if
end while
return $\tilde{\mathbf{U}}(z)$, $\tilde{\mathbf{A}}(z)$.

Imperial College London

Simulations and Results

Simulations and Results

SBR2 with Householder Reduction for PEVD - 16/25

Experiment Setup

The setup was based on the 3 sensors, 2 sources decorrelation simulation in [5] which used

- i.i.d. source signals of 1000 samples each and each sample was assigned ± 1 with equal probability
- each channel was modelled as a 5-th order FIR filter and each coefficent was drawn from U[-1,1]
- additive white Gaussian noise with $\sigma=1.8$
- PEVD parameters: $W=10, \mu=10^{-4}$, $\delta \leq \sqrt{N_1/3} \times 10^{-2}$

This was repeated 1000 times for the Monte-Carlo simulation.

For each algorithm, we computed the

- Number of iterations, L
- Reconstruction error, $\epsilon \triangleq \sum_{\forall z} \| \tilde{\mathbf{A}}(z) \mathbf{A}(z) \|_F$

For comparisons of both algorithms, we used

- Relative L difference, $\Delta L(\%) = \frac{L_{\text{Proposed}} L_{\text{SBR2}}}{L_{\text{SBR2}}} \times 100\%$
- Relative ϵ difference, $\Delta \epsilon (\%) = \frac{\epsilon_{\text{Proposed}} \epsilon_{\text{SBR2}}}{\sum_{\forall z} \|\mathbf{A}(z)\|_F} \times 100\%$

Tridiagonal Reduction in PEVD

Imperial College London

diagonalisation target: Maximum off-diagonal $|g| \leq 0.087$

Simulations and Results

Monte-Carlo Results: Iteration Counts

Imperial College London

Monte-Carlo Results: Reconstruction Error^{Imperial College}

 \Rightarrow Both methods were consistent to $\pm 1\%$ in ϵ .

Conclusion

Conclusion

SBR2 with Householder Reduction for PEVD - 22/25

Conclusion

- Proposed the use of Householder reduction before applying the Givens rotations at the zeroing step in SBR2.
- An average of 12% reduction in iteration counts is achievable.
- An average of 0.1% improvement in reconstruction error is achievable.
- Further reduction in iteration counts is expected as the matrix dimension increases.

References

- M. A. Alrmah, S. Weiss, and S. Lambotharan, "An extension of the MUSIC algorithm to broadband scenarios using a polynomial eigenvalue decomposition," in *Proc. European Signal Process. Conf.* (*EUSIPCO*), 2011, pp. 629–633.
- [2] S. Redif, S. Weiss, and J. G. McWhirter, "Relevance of polynomial matrix decompositions to broadband blind signal separation," Signal Process., vol. 134, pp. 76–86, May 2017, ISSN: 0165-1684. DOI: https://doi.org/to.tot6/j.sigpro.2016.1L019.
- [3] S. Weiss, S. Bendoukha, A. Alzin, F. K. Coutts, I. K. Proudler, and J. Chambers, "MVDR broadband beamforming using polynomial matrix techniques," in *Proc. European Signal Process. Conf. (EUSIPCO)*, 2015, pp. 839–843. DOI: https://doi.org/fbUSPCO.org/spaget.
- [4] S. Weiss, N. J. Goddard, S. Somasundaram, I. K. Proudler, and P. A. Naylor, "Identification of broadband source-array responses from sensor second order statistics," in *Sensor Signal Process. for Defence Conf.* (SSPD), 2017.
- [5] J. G. McWhirter, P. D. Baxter, T. Cooper, S. Redif, and J. Foster, "An EVD algorithm for para-Hermitian polynomial matrices," *IEEE Trans. Signal Process.*, vol. 55, no. 5, pp. 2158–2169, May 2007.
- [6] S. Redif, S. Weiss, and J. G. McWhirter, "An approximate polynomial matrix eigenvalue decomposition algorithm for para-Hermitian matrices," in *Proc. Intl. Symp. on Signal Process. and Inform. Technology* (ISSPIT), 2011, pp. 421–425.
- [7] —, "Sequential matrix diagonalisation algorithms for polynomial EVD of para-Hermitian matrices," IEEE Trans. Signal Process., vol. 63, no. 1, pp. 81–89, Jan. 2015.
- [8] Z. Wang, J. G. McWhirter, and S. Weiss, "Multichannel spectral factorization algorithm using polynomial matrix eigenvalue decomposition," in Proc. Asilomar Conf. on Signals, Systems and Computers, 2015, pp. 1714–1718. DOI: 10.109/ACSSC.20157421442.

References

- [9] J. Corr, K. Thompson, S. Weiss, J. G. McWhirter, S. Redif, and I. K. Proudler, "Multiple shift maximum element sequential matrix diagonalisation for para-Hermitian matrices," in *Proc. IEEE/SP Workshop on Statistical Signal Processing*, Australia, 2014, pp. 844–848.
- [10] A. Tkacenko, "Approximate eigenvalue decomposition of para-Hermitian systems through successive FIR paraunitary transformations," in Proc. IEEE Intl. Conf. on Acoust., Speech and Signal Process. (ICASSP), 2011.
- [11] J. Corr, K. Thompson, S. Weiss, I. Proudler, and J. G. McWhirter, "Shortening of paraunitary matrices obtained by polynomial eigenvalue decomposition algorithms," in *Proc. Sensor Signal Processing for Defence (SSPD)*, 2015. DOI: 10.109/SSPD.2015728523.
- [12] G. H. Golub and C. F. van Loan, Matrix Computations, third. Baltimore, MD, USA: INST_JHU, 1996.