Second Order Sequential Best

Rotation Algorithm with Householder

 Reduction for Polynomial Matrix Eigenvalue DecompositionImperial College London

Vincent W. Neo, Patrick A. Naylor 16 May 2019

Outline

1. Introduction

Motivation for PEVD
Polynomial Matrices
PEVD
2. Proposed Method

Householder Reduction
3. Simulations and Results

Experiment Setup
Single Example
Results of Monte-Carlo Simulation
4. Conclusion

Introduction

Motivation for PEVD

- EVD of Hermitian matrices is commonly used in
- subspace decomposition for data compression
- blind source separation
- adaptive beamforming
\Rightarrow Assumption: Sources are narrowband
- Broadband signals need to model the correlation between sensor pairs across different time lags
\longrightarrow Polynomial matrices
- Development of PEVD algorithms and applications in
- subspace decomposition using polynomial MUSIC [1]
- blind source separation [2]
- adaptive beamforming [3]
- source identification [4]

Polynomial Matrices

The data vector at time index n collected from M-sensors is

$$
\mathbf{x}(n)=\left[x_{1}(n), x_{2}(n), \ldots, x_{M}(n)\right]^{T} \in \mathbb{C}^{M}
$$

The space-time covariance matrix for N time snapshots is

$$
\mathbf{A}(\tau)=\mathbb{E}\left\{\mathbf{x}(n) \mathbf{x}^{H}(n-\tau)\right\} \approx \frac{1}{N} \sum_{n=0}^{N-1} \mathbf{x}(n) \mathbf{x}^{H}(n-\tau) \in \mathbb{C}^{M \times M}
$$

and its z-transform is a para-Hermitian polynomial matrix,

$$
\mathbf{A}(z)=\sum_{\tau=-W}^{W} \mathbf{A}(\tau) z^{-\tau}
$$

Polynomial Eigenvalue Decomposition

The PEVD of $\mathbf{A}(z)$ according to [5] is

$$
\mathbf{A}(z) \approx \mathbf{U}(z) \boldsymbol{\Lambda}(z) \mathbf{U}^{P}(z)
$$

where

- $\mathbf{U}^{P}(z)=\mathbf{U}^{H}\left(z^{-1}\right)$,
- $\Lambda(z)$ is the eigenvalue polynomial matrix and
- $\mathrm{U}(z)$ is the eigenvector polynomial matrix, such that

$$
\mathbf{U}(z)=\mathbf{U}_{L}(z) \ldots \mathbf{U}_{2}(z) \mathbf{U}_{1}(z)
$$

constructed using L para-unitary polynomial matrices.

Comparison between EVD and PEVD

$$
\left[\begin{array}{ccc}
9.30 & 5.12 & 4.23 \\
5.12 & 8.61 & 4.50 \\
4.23 & 4.50 & 8.27
\end{array}\right]
$$

A taken from $\mathbf{A}\left(z^{0}\right)$.

Iter. count=0, Max. off-diagonal, $|\mathbf{g}|=5.13$

$\mathbf{A}(z)$ example.

Comparison between EVD and PEVD

Iter. count=169, Max. off-diagonal, $|\mathbf{g}|=\mathbf{0 . 0 8 3 9}$

$$
\left[\begin{array}{ccc}
18.0 & 0 & 0 \\
0 & 4.53 & 0 \\
0 & 0 & 3.66
\end{array}\right]
$$

Λ using EVD.

$\Lambda(z)$ using SBR2 with $\delta=0.087$.
$\delta \leq \sqrt{N_{1} / 3} \times 10^{-2}$ where N_{1} is the trace-norm of $\mathbf{A}\left(z^{0}\right)$ [5].

SBR2 Algorithm [5]

At each iteration, SBR2 will
(i) search for the largest off-diagonal, $|g|$,
(ii) delay and bring $|g|$ to the zero-lag plane,
(iii) zero $|g|$ using a Givens rotation and
(iv) trim negligible high order terms.

Family of PEVD Algorithms

SBR2 provided a framework for extensions based on (i)-(iv).
(i) search: norm-2 instead of inf-norm

- Householder-like PEVD [6]
- sequential matrix diagonalisation (SMD) [7]
(ii) delay: multiple-shift (MS) instead of single-shift
- MS-SBR2 [8]
- MS-SMD [9]
(iii) zero: one-step diagonalisation of z^{0} instead of using the Givens rotation
- SMD [7]
- Householder-like PEVD [6]
- approximate PEVD [10].
(iv) trim: row-shifted truncation SMD [11].

Proposed Method

Jacobi's Method for Symmetric EVD

Consider the principal plane of a polynomial matrix, $A\left(z^{0}\right) \in \mathbb{C}^{M \times M}$.
$\left[\begin{array}{cccccc}a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & \ldots & a_{1, M} \\ a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} & \ldots & a_{2, M} \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & \ldots & a_{3, M} \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ a_{M-1,1} & a_{M-1,2} & a_{M-1,3} & \ldots & a_{M-1, M-1} & a_{M-1, M} \\ a_{M, 1} & a_{M, 2} & a_{M, 3} & \ldots & a_{M, M-1} & a_{M, M}\end{array}\right]$
\Rightarrow Cycling through all off-diagonal elements using Jacobi's algorithm requires $\frac{M(M-1)}{2}$ Givens rotations.

Householder Reduction in EVD

($M-1$) Householder reflections first reduce the principal plane to tridiagonal form [12].

$$
\left[\begin{array}{cccccc}
a_{1,1} & a_{1,2} & 0 & \cdots & \cdots & 0 \\
a_{2,1} & a_{2,2} & a_{2,3} & 0 & \cdots & \vdots \\
0 & a_{3,2} & a_{3,3} & a_{3,4} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \cdots & \ddots & \ddots & a_{M-1, M-1} & a_{M-1, M} \\
0 & \cdots & \cdots & \cdots & a_{M, M-1} & a_{M, M}
\end{array}\right]
$$

\Rightarrow In this reduced form, there are fewer elements to zero.
\Rightarrow Cycling through all off-diagonal elements uses $(M-2)$
Householder reflections followed by $(M-1)$ Givens rotations.

Householder Reduction in EVD

Comparison of diagonalisation using Householder + Givens (HG) and Givens-only (G) using 1000 randomly generated symmetric matrices for every M with $\delta \leq \sqrt{N_{1} / 3} \times 10^{-2}$.

\Rightarrow The reduction in L achieved by Householder + Givens over Givens-only method scales with matrix dimension, M.

SBR2 with Householder Reduction

Inputs: $\mathbf{A}(z) \in \mathbb{C}^{M \times M}, \delta$, maxIter, μ.
initialise: $l \leftarrow 0, \mathrm{~g} \leftarrow 1+\delta, \tilde{\Lambda}(z)=\mathbf{A}(z), \tilde{\mathbf{U}}(z)=\mathbf{I}$.
while ($l<$ maxlter and $\mathrm{g}>\delta$) do

$$
\mathrm{g} \leftarrow \max \left|r_{j k}\left(z^{t}\right)\right|, k>j, \forall t
$$

if $(\mathrm{g}>\delta)$ then
$l \leftarrow l+1$.
$\tilde{\Lambda}(z) \leftarrow \mathbf{D}_{j}(z) \tilde{\Lambda}(z) \mathbf{D}_{j}^{P}(z)$,

$$
\tilde{\mathbf{U}}(z) \leftarrow \mathbf{D}_{j}(z) \tilde{\mathbf{U}}(z) / / \text { delay }
$$

$$
\underset{\sim}{\tilde{\Lambda}}(z) \leftarrow \mathbf{H} \underset{\sim}{\tilde{\Lambda}}(z) \mathbf{H}^{H}
$$

$$
\tilde{\mathbf{U}}(z) \leftarrow \mathbf{H} \tilde{\mathrm{U}}(z) / / \text { reflect }
$$

$$
\underset{\sim}{\tilde{\Lambda}}(z) \leftarrow \mathbf{G}(\theta, \phi) \underset{\sim}{\boldsymbol{\Lambda}}(z) \mathbf{G}^{H}(\theta, \phi),
$$

$$
\tilde{\mathbf{U}}(z) \leftarrow \mathbf{G}(\theta, \phi) \tilde{\mathbf{U}}(z) / / \text { rotate }
$$

$$
\underset{\sim}{\tilde{\Lambda}}(z) \leftarrow \operatorname{trim}(\underset{\sim}{\tilde{\Lambda}}(z), \mu)
$$

$$
\tilde{\mathbf{U}}(z) \leftarrow \operatorname{trim}(\tilde{\mathbf{U}}(z), \mu) / / \operatorname{trim}
$$

end if
end while
return $\tilde{\mathbf{U}}(z), \tilde{\Lambda}(z)$.

Simulations and Results

Experiment Setup

The setup was based on the 3 sensors, 2 sources decorrelation simulation in [5] which used

- i.i.d. source signals of 1000 samples each and each sample was assigned ± 1 with equal probability
- each channel was modelled as a 5-th order FIR filter and each coefficent was drawn from $U[-1,1]$
- additive white Gaussian noise with $\sigma=1.8$
- PEVD parameters: $W=10, \mu=10^{-4}$,

$$
\delta \leq \sqrt{N_{1} / 3} \times 10^{-2}
$$

This was repeated 1000 times for the Monte-Carlo simulation.

Evaluation Measures

For each algorithm, we computed the

- Number of iterations, L
- Reconstruction error, $\epsilon \triangleq \sum_{\forall z}\|\tilde{\mathbf{A}}(z)-\mathbf{A}(z)\|_{F}$

For comparisons of both algorithms, we used

- Relative L difference, $\Delta L(\%)=\frac{L_{\text {Proposed }}-L_{\text {SBR } 2}}{L_{\text {SBR } 2}} \times 100 \%$
- Relative ϵ difference, $\Delta \epsilon(\%)=\frac{\epsilon_{\text {Proposed }}-\epsilon_{\text {SRR } 2}}{\sum_{\forall z}\|\mathbf{A}(z)\|_{F}} \times 100 \%$

Tridiagonal Reduction in PEVD

diagonalisation target: Maximum off-diagonal $|g| \leq 0.087$

Iter. count=0, Max. off-diagonal, |g|=5.13

SBR2 took 169 iterations.

Iter. count=0, Max. off-diagonal, $|\mathrm{g}|=5.13$

Our method took 101 iterations. reduces the number of iterations for PEVD.

Monte-Carlo Results: Iteration Counts

Histogram of relative iteration difference

\Rightarrow Our method achieved an average of 12% reduction in L over SBR2.
\Rightarrow Reduction in L was achieved in 82% of the trials.

Monte-Carlo Results: Reconstruction Error

\Rightarrow Our method achieved an average of 0.1% reduction in ϵ.
\Rightarrow Both methods were consistent to $\pm 1 \%$ in ϵ.

Conclusion

Conclusion

- Proposed the use of Householder reduction before applying the Givens rotations at the zeroing step in SBR2.
- An average of 12% reduction in iteration counts is achievable.
- An average of 0.1% improvement in reconstruction error is achievable.
- Further reduction in iteration counts is expected as the matrix dimension increases.

References

London
[1] M. A. Alrmah, S. Weiss, and S. Lambotharan, "An extension of the MUSIC algorithm to broadband scenarios using a polynomial eigenvalue decomposition," in Proc. European Signal Process. Conf. (EUSIPCO), 2011, pp. 629-633.
[2] S. Redif, S. Weiss, and J. G. McWhirter, "Relevance of polynomial matrix decompositions to broadband blind signal separation," Signal Process., vol. 134, pp. 76-86, May 2017, ISSN: 0165-1684. DOI: https://doi.org/to.ro16/.sigpro.2016.II.oI9.
[3] S. Weiss, S. Bendoukha, A. Alzin, F. K. Coutts, I. K. Proudler, and J. Chambers, "MVDR broadband beamforming using polynomial matrix techniques," in Proc. European Signal Process. Conf. (EUSIPCO), 2015, pp. 839-843. DOI: Io.IIO9/EUSIPCO.2015.736250I.
[4] S. Weiss, N. J. Goddard, S. Somasundaram, I. K. Proudler, and P. A. Naylor, "Identification of broadband source-array responses from sensor second order statistics," in Sensor Signal Process. for Defence Conf. (SSPD), 2017
[5] J. G. McWhirter, P. D. Baxter, T. Cooper, S. Redif, and J. Foster, "An EVD algorithm for para-Hermitian polynomial matrices," IEEE Trans. Signal Process., vol. 55, no. 5, pp. 2158-2169, May 2007.
[6] S. Redif, S. Weiss, and J. G. McWhirter, "An approximate polynomial matrix eigenvalue decomposition algorithm for para-Hermitian matrices," in Proc. Intl. Symp. on Signal Process. and Inform. Technology (ISSPIT), 2011, pp. 421-425.
[7] _- "Sequential matrix diagonalisation algorithms for polynomial EVD of para-Hermitian matrices," IEEE Trans. Signal Process., vol. 63, no. 1, pp. 81-89, Jan. 2015.
[8] Z. Wang, J. G. McWhirter, and S. Weiss, "Multichannel spectral factorization algorithm using polynomial matrix eigenvalue decomposition," in Proc. Asilomar Conf. on Signals, Systems and Computers, 2015, pp. 1714-1718. DOI: го.Iro9/ACSSC.20I5.7421442.

References

[9] J. Corr, K. Thompson, S. Weiss, J. G. McWhirter, S. Redif, and I. K. Proudler, "Multiple shift maximum element sequential matrix diagonalisation for para-Hermitian matrices," in Proc. IEEE/SP Workshop on Statistical Signal Processing, Australia, 2014, pp. 844-848.
[10] A. Tkacenko, "Approximate eigenvalue decomposition of para-Hermitian systems through successive FIR paraunitary transformations," in Proc. IEEE Intl. Conf. on Acoust., Speech and Signal Process. (ICASSP), 2011.
[11] J. Corr, K. Thompson, S. Weiss, I. Proudler, and J. G. McWhirter, "Shortening of paraunitary matrices obtained by polynomial eigenvalue decomposition algorithms," in Proc. Sensor Signal Processing for Defence (SSPD), 2015. DOI: ro.iro9/SSPD.2015.7288523.
[12] G. H. Golub and C. F. van Loan, Matrix Computations, third. Baltimore, MD, USA: INST_JHU, 1996.

