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• Persistent homology is applied to reconstructed attractors from time series data.

 • For periodicity detection and classification of time series data.

• Topological structure of orbits of ordinary differential equations reflects the periodicity or chaos.

• Computing persistent homology of thousands of points requires several days and hundreds GiB 

of memory.

 • We want to reduce the computational cost by fitting cubic Bézier curves to time series data.

Background
• Persistent homology extracts the number and the widths of holes in a shape.

• A shape is given as a simplicial complex.

• Vietoris-Rips complex is constructed from a point cloud.

Persistent homology
• For a point cloud X, the Vietoris-Rips complex of X is defined as

                                                                                                                                                              .

• The simplices in VRr(X) is sorted by the value of the filter function:

Introduction

VRr(X) = {|xi0xi1 · · ·xiq | : q − simplex | ∀j, k, d(xij , xik) ≤ r}

f(σ) =






0, (dimσ = 0),

d(u, v), (dimσ = 1),

maxτ≺σ f(τ), (otherwise).

 The Number of Simplices in a filtration of Vietoris-Rips complex

• The threshold r is set to the infinity.

• The upper dimension of homology groups is 2, so we need simplices of dimension less than 3.

• The number of simplices is                   and its order is O(n3) where n is the number of points.
∑3

k=0

(
n
k

)

 Persistence Diagrams and Bottleneck Distance

• The persistence diagram of a persistent homology PHq(X) is defined as:

                

• The bottleneck distance between diagrams X and Y is defined as:

where                      ranges over all bijections and the norm is defined as 

                                                                                                                        .

Dgmq(X) = {((b(α), d(α)) | α ∈ PHq(X)} ∪ {(x, x) | x ∈ R ∪ {∞}}.

W∞(X,Y ) = inf

η:X→Y
sup

α∈X
‖α− η(α)‖∞,

η : X → Y

‖α‖∞ = ‖(b, d)‖∞ = max{|b|, |d|}

Attractor reconstruction
• The observed time series is mapped into the delay-coordinate space.

• The delay-coordinate vector with dimension d and delay a is defined as

for a time series data                   .

y(t) = (x(t), x(t− a), x(t− 2a), . . . , x(t− (d− 1)a)))

{x(t)}nt=1

Proposed Method

• The series of pairs of points and sampling time:

                                                                                              .

• The input time series is grouped into several groups.

• The cubic Bézier curve is parametrized as

                                                                                                     .

• Fitting is achieved by minimizing the squared error function:

Fit cubic Bézier curves

{(xi, ti) | xi ∈ Rd}li=1 (0 ≤ ti ≤ 1)

p(t) =
∑3

i=0

(
3
i

)
(1− t)3−itipi (0 ≤ t ≤ 1)

L(p0, p1, p2, p3) =

l∑

i=1

‖p(ti)− xi‖2.

• The fitted cubic Bézier curve is divided into line segments.

• The unit interval [0, 1] is uniformly divided into r intervals:

                                                     where                                             .

• Each interval is mapped into the cubic Bézier curve:

Divide into line segments

[t0, t1], . . . , [tr−1, tr] ti = i/r (i = 0, 1, . . . , r)

−−−−−−→
p(t0)p(t1),

−−−−−−→
p(t1)p(t2), . . . ,

−−−−−−−−→
p(tr−1)p(tr).

Distance between line segments
• Let          and          be line segments.

• The distance between them is defined as                                                                      .

• The distance is calculated by minimizing the function                                                                       .

−−→q0q1
−−→r0r1

d(−−→q0q1,
−−→r0r1) = minq∈−−→q0q1, r∈−−→r0r1 d(q, r)

f(s, t) = d(q(s), r(t))2 = ‖q(s)− r(t)‖2

Comparison between the ordinary and proposed Method

Experiments

 Ordinary Method

 Proposed Method

Irrational flow on 2-torus
• The irrational flow is defined as                                                             where                                     .

• We set             and                .

• The trajectory is mapped into 3-dimensional Euclidean space with the mapping below:

where R = 2 and r = 1.

• The trajectory was developped from t = 0 to t = 50π.

• The number of points was n = 2000, 3000, 4000 and the parameters was l = 30 and r = 3, 6, 10.

du
dt = α mod 1, dv

dt = β mod 1, (u, v) ∈ [0, 1]× [0, 1]

α = 1 β =

√
2

x1 = R cosu+ r cosu cos v,
x2 = R sinu+ r sinu cos v,
x3 = r sin v,
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 Time performance (left) and memory performance (right)
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 Comparison for noised input data

• Added 10% gaussian noise to the trajectory.

• Computed the bottleneck distance between the clean input and the noised input.
q=0 q=1 q=2

Japanese vowels /a/, /e/, /i/, /o/ and /u/
• The signals were mapped into the delay-coordinate space of d = 10 and a = 10.

• 1100 steps (almost 125 ms) of each embedded signal were extracted.

• The parameter was set to l = 10 and r = 2.

• The performance of the proposed method was compared to that of the Witness complex.

Vowel Ordinary Proposed Witness
/a/ 290 sec < 1 sec < 1 sec
/e/ 312 sec < 1 sec < 1 sec
/i/ 268 sec < 1 sec < 1 sec
/o/ 291 sec < 1 sec < 1 sec
/u/ 277 sec < 1 sec < 1 sec

Computational Time
Ordinary Proposed Witness
12.5 GiB 0.11 GiB 0.14 GiB
11.5 GiB 0.09 GiB 0.09 GiB
11.5 GiB 0.09 GiB 0.10 GiB
11.5 GiB 0.09 GiB 0.09 GiB
11.5 GiB 0.09 GiB 0.09 GiB

Vowel
/a/
/e/
/i/
/o/
/u/

Computational Memory

Vowel 0th 1st 2nd
/a/ 0.064 0.644 0.131
/e/ 0.029 0.032 0.047
/i/ 0.026 0.027 0.014
/o/ 0.021 0.068 0.011
/u/ 0.016 0.032 0.020

Proposed Method

0th 1st 2nd
0.126 0.645 0.177
0.026 0.217 0.038
0.018 0.292 0.034
0.022 0.279 0.069
0.015 0.332 0.029

Vowel
/a/
/e/
/i/
/o/
/u/

Witness complex

• The distances to the ordinary Vietoris-Rips complex was compared.

Acknowledgements
 This research was partially supported by AMED under Grant Number JP19dm0307009 and NEC corporation.


