A Fast Method of Computing Persistent Homology of Time Series Data

Shotaro Tsuji*, Kazuyuki Aihara* ${ }^{\star \dagger}$

*Department of Methematical Informatics, University of Tokyo †Institute of Industrial Science, University of Tokyo

Introduction

- Persistent homology is applied to reconstructed attractors from time series dat
- For periodicity detection and classification of time series data.
- Topological structure of orbits of ordinary differential equations reflects the periodicity or chaos. - Computing persistent homology of thousands of points requires several days and hundreds GiB of memory.
-We want to reduce the computational cost by fitting cubic Bézier curves to time series data.

Background

- Persistent homology extracts the number and the widths of holes in a shape
- A shape is given as a simplicial complex.
- Vietoris-Rips complex is constructed from a point cloud.

Persistent homology

- For a point cloud X , the Vietoris-Rips complex of X is defined as

$$
\operatorname{VR}_{r}(X)=\left\{\left|x_{i_{0}} x_{i_{1}} \cdots x_{i_{q}}\right|: q-\text { simplex } \mid \forall j, k, d\left(x_{i_{j}}, x_{i_{k}}\right) \leq r\right\} .
$$

-The simplices in $\mathrm{VR}_{r}(\mathrm{X})$ is sorted by the value of the filter function:

$$
f(\sigma)= \begin{cases}0, & (\operatorname{dim} \sigma=0), \\ d(u, v), & (\operatorname{dim} \sigma=1), \\ \max _{\tau \prec \sigma} f(\tau), & (\text { otherwise }) .\end{cases}
$$

The Number of Simplices in a filtration of Vietoris-Rips complex
The threshold r is set to the infinity

- The upper dimension of homology groups is 2 , so we need simplices of dimension less than 3 - The number of simplices is $\sum_{k=0}^{3}\binom{n}{k}$ and its order is $O\left(n^{3}\right)$ where n is the number of points.

Persistence Diagrams and Bottleneck Distance

- The persistence diagram of a persistent homology $P H_{q}(X)$ is defined as:

$$
\operatorname{Dgm}_{q}(X)=\left\{\left((b(\alpha), d(\alpha)) \mid \alpha \in P H_{q}(X)\right\} \cup\{(x, x) \mid x \in \mathbb{R} \cup\{\infty\}\right.
$$

The bottleneck distance between diagrams X and Y is defined as

$$
W_{\infty}(X, Y)=\inf _{\eta: X \rightarrow Y} \sup _{\alpha \in X}\|\alpha-\eta(\alpha)\|_{\infty},
$$

where $\eta: X \rightarrow Y$ ranges over all bijections and the norm is defined as

$$
\|\alpha\|_{\infty}=\|(b, d)\|_{\infty}=\max \{| ||,|d|\} .
$$

Attractor reconstruction

- The observed time series is mapped into the delay-coordinate space.
-The delay-coordinate vector with dimension d and delay a is defined as

$$
y(t)=(x(t), x(t-a), x(t-2 a), \ldots, x(t-(d-1) a)))
$$

for a time series data $\{x(t)\}_{t=1}^{n}$.

Acknowledgements

This research was partially supported by AMED under Grant Number JP19dm0307009 and NEC corporation

Proposed Method

Fit cubic Bézier curves

The series of pairs of points and sampling time:

$$
\left\{\left(x_{i}, t_{i}\right) \mid x_{i} \in \mathbb{R}^{d}\right\}_{i=1}^{l}\left(0 \leq t_{i} \leq 1\right) .
$$

-The input time series is grouped into several groups,
-The cubic Bézier curve is parametrized as

$$
p(t)=\sum_{i=0}^{3}\binom{3}{i}(1-t)^{3-i} t^{i} p_{i}(0 \leq t \leq 1) .
$$

- Fitting is achieved by minimizing the squared error function

$$
L\left(p_{0}, p_{1}, p_{2}, p_{3}\right)=\sum_{i=1}^{l}\left\|p\left(t_{i}\right)-x_{i}\right\|^{2} .
$$

Divide into line segments

- The fitted cubic Bézier curve is divided into line segments. - The unit interval $[0,1]$ is uniformly divided into r intervals

$$
\left[t_{0}, t_{1}\right], \ldots,\left[t_{r-1}, t_{r}\right] \text { where } t_{i}=i / r(i=0,1 \text {, }
$$ - Each interval is mapped into the cubic Bézier curve

$$
\overrightarrow{p\left(t_{0}\right) p\left(t_{1}\right)}, \overrightarrow{p\left(t_{1}\right) p\left(t_{2}\right)}, \ldots, \overrightarrow{p\left(t_{r-1}\right) p\left(t_{r}\right)} .
$$

Distance between line segments

- Let $\overrightarrow{q_{0} q_{1}}$ and $\overrightarrow{r_{0} r_{1}}$ be line segments.
- The distance between them is defined as $d\left(\overrightarrow{q_{0 q}}, \overrightarrow{r_{0} r_{1}}\right)=\min _{q \in \overrightarrow{q_{0 q}}, r \in \overrightarrow{r_{0} r_{1}}} d(q, r)$.
- The distance is calculated by minimizing the function $f(s, t)=d(q(s), r(t))^{2}=\|q(s)-r(t)\|^{2}$.

Comparison between the ordinary and proposed Method

Ordinary Method

Proposed Method

Experiments

Irrational flow on 2-torus

- The irrational flow is defined as $\frac{d u}{d t}=\alpha \bmod 1, \frac{d v}{d t}=\beta \bmod 1$, where $(u, v) \in[0,1] \times[0,1]$. We set $\alpha=1$ and $\beta=\sqrt{2}$.
-The trajectory is mapped into 3 -dimensional Euclidean space with the mapping below

$$
\begin{aligned}
& x_{1}=R \cos u+r \cos u \cos v, \\
& x_{2}=R \sin u+r \sin u \cos v, \\
& x_{3}=r \sin v,
\end{aligned}
$$

where $R=2$ and $r=1$.
$x_{3}=r \sin v$,

- The trajectory was developped from $t=0$ to $t=50 \pi$.
- The number of points was $n=2000,3000,4000$ and the parameters was $l=30$ and $r=3,6,10$, Time performance (left) and memory performance (right)

Comparison for noised input data

- Added 10% gaussian noise to the trajectory
- Computed the bottleneck distance between the clean input and the noised input.

Japanese vowels /a/, /e/, /i/, /o/ and/u/

The signals were mapped into the delay-coordinate space of $d=10$ and $a=10$.

- 1100 steps (almost 125 ms) of each embedded signal were extracted.
- The parameter was set to $l=10$ and $r=2$.
- The performance of the proposed method was compared to that of the Witness complex.

putational Time				Computational Memory			
Vowel	Ordinary	Proposed	Witness	Vowel	Ordinary	Proposed	Witness
/a/	290 sec	<1 sec	<1 sec	/a/	12.5 GiB	0.11 GiB	0.14 GiB
/e/	312 sec	$<1 \mathrm{sec}$	<1 sec	/e/	11.5 GiB	0.09 GiB	0.09 GiB
/i/	268 sec	<1 sec	$<1 \mathrm{sec}$	fi/	11.5 GiB	0.09 GiB	0.10 GiB
/o/	291 sec	<1 sec	<1 sec	/o/	11.5 GiB	0.09 GiB	0.09 GiB
/u/	277 sec	<1 sec	<1 sec	/u/	11.5 GiB	0.09 GiB	0.09 GiB

The distances to the ordinary Vietoris-Rips complex was compared

Proposed Method				Witness complex			
Vowel	0th	1st	2nd	Vowel	Oth	1st	2nd
Ia/	0.064	0.644	0.131	la/	0.126	0.645	0.177
/e/	0.029	0.032	0.047	/e/	0.026	0.217	0.038
/i/	0.026	0.027	0.014	fi/	0.018	0.292	0.034
/0/	0.021	0.068	0.011	/0/	0.022	0.279	0.069
/u/	0.016	0.032	0.020	/u/	0.015	0.332	0.029

