A Fast Method of Computing Persistent Homology of Time Series Data

*Department of Methematical Informatics, University of Tokyo [†]Institute of Industrial Science, University of Tokyo

Introduction

- **Persistent homology** is applied to **reconstructed attractors** from time series data. • For periodicity detection and classification of time series data.
- Topological structure of orbits of ordinary differential equations reflects the periodicity or chaos.
- Computing persistent homology of thousands of points requires several days and hundreds GiB of memory.
- We want to reduce the computational cost by fitting **cubic Bézier curves** to time series data.

Background

- Persistent homology extracts the number and the widths of holes in a shape.
- A shape is given as a simplicial complex.
- Vietoris-Rips complex is constructed from a point cloud.

Persistent homology

- For a point cloud X, the Vietoris-Rips complex of X is defined as $\operatorname{VR}_{r}(X) = \{ |x_{i_{0}}x_{i_{1}}\cdots x_{i_{q}}| : q - \operatorname{simplex} | \forall j, k, \ d(x_{i_{j}}, x_{i_{k}}) \leq r \}.$
- The simplices in $VR_{r}(X)$ is sorted by the value of the filter function:

$$f(\sigma) = \begin{cases} 0, & (\dim \sigma = 0) \\ d(u, v), & (\dim \sigma = 1) \\ \max_{\tau \prec \sigma} f(\tau), & (\text{otherwise}) \end{cases}$$

The Number of Simplices in a filtration of Vietoris-Rips complex

- The threshold *r* is set to the infinity.
- The upper dimension of homology groups is 2, so we need simplices of dimension less than 3.
- The number of simplices is $\sum_{k=0}^{3} \binom{n}{k}$ and its order is $O(n^3)$ where *n* is the number of points.

Persistence Diagrams and Bottleneck Distance

- The **persistence diagram** of a persistent homology $PH_{a}(X)$ is defined as: $\mathrm{Dgm}_q(X) = \{ ((b(\alpha), d(\alpha)) \mid \alpha \in PH_q(X) \} \cup \{ (x, x) \mid x \in \mathbb{R} \cup \{\infty\} \}.$
- The **bottleneck distance** between diagrams *X* and *Y* is defined as: $W_{\infty}(X,Y) = \inf_{\eta: X \to Y} \sup_{\alpha \in X} \|\alpha - \eta(\alpha)\|_{\infty},$
- where $\eta: X \to Y$ ranges over all bijections and the norm is defined as $\|\alpha\|_{\infty} = \|(b,d)\|_{\infty} = \max\{|b|,|d|\}.$

Attractor reconstruction

- The observed time series is mapped into the **delay-coordinate space**.
- The delay-coordinate vector with dimension *d* and delay *a* is defined as

 $y(t) = (x(t), x(t-a), x(t-2a), \dots, x(t-(d-1)a)))$

for a time series data $\{x(t)\}_{t=1}^n$.

Acknowledgements

This research was partially supported by AMED under Grant Number JP19dm0307009 and NEC corporation.

IEEE ICASSP 2019

Shotaro Tsuji*, Kazuyuki Aihara*[†]

Proposed Method

Fit cubic Bézier curves

- The series of pairs of points and sampling time: $\{(x_i, t_i) \mid x_i \in \mathbb{R}^d\}_{i=1}^l \ (0 \le t_i \le 1).$
- The input time series is grouped into several groups.
- The cubic Bézier curve is parametrized as
 - $p(t) = \sum_{i=0}^{3} {\binom{3}{i}} (1-t)^{3-i} t^{i} p_{i} \quad (0 \le t \le 1).$
- Fitting is achieved by minimizing the squared error function:

$$L(p_0, p_1, p_2, p_3) = \sum_{i=1}^{l} \|p(t_i) - x_i\|^2.$$

Divide into line segments

- The fitted cubic Bézier curve is divided into line segments.
- The unit interval [0, 1] is uniformly divided into *r* intervals: $[t_0, t_1], \ldots, [t_{r-1}, t_r]$ where $t_i = i/r$ $(i = 0, 1, \ldots, r)$.
- Each interval is mapped into the cubic Bézier curve: $\overrightarrow{p(t_0)p(t_1)}, \overrightarrow{p(t_1)p(t_2)}, \dots, \overrightarrow{p(t_{r-1})p(t_r)}.$

Distance between line segments

- Let $\overrightarrow{q_0q_1}$ and $\overrightarrow{r_0r_1}$ be line segments.
- The distance between them is defined as $d(\overrightarrow{q_0q_1}, \overrightarrow{r_0r_1}) = \min_{q \in \overrightarrow{q_0q_1}, r \in \overrightarrow{r_0r_1}} d(q, r)$.
- The distance is calculated by minimizing the function $f(s,t) = d(q(s), r(t))^2 = ||q(s) r(t)||^2$.

Comparison between the ordinary and proposed Method

Ordinary Method

Experiments

Irrational flow on 2-torus

- We set $\alpha = 1$ and $\beta = \sqrt{2}$.
- - $x_3 = r \sin v,$

where R = 2 and r = 1.

- The trajectory was developped from t = 0 to $t = 50\pi$.

Time performance (left) and memory performance (right)

Comparison for noised input data

- Added 10% gaussian noise to the trajectory.

Japanese vowels /a/, /e/, /i/, /o/ and /u/

- The signals were mapped into the delay-coordinate space of d = 10 and a = 10.
- 1100 steps (almost 125 ms) of each embedded signal were extracted.
- The parameter was set to l = 10 and r = 2.
- Computational Time

Vowel	Ordinary	Proposed	Witness	Vowel	Ordinary	Proposed	Witness	
/a/	290 sec	< 1 sec	< 1 sec	/a/	12.5 GiB	0.11 GiB	0.14 GiB	
/e/	312 sec	< 1 sec	< 1 sec	/e/	11.5 GiB	0.09 GiB	0.09 GiB	
/i/	268 sec	< 1 sec	< 1 sec	/i/	11.5 GiB	0.09 GiB	0.10 GiB	
/0/	291 sec	< 1 sec	< 1 sec	/0/	11.5 GiB	0.09 GiB	0.09 GiB	
/u/	277 sec	< 1 sec	< 1 sec	/u/	11.5 GiB	0.09 GiB	0.09 GiB	

• The distances to the ordinary Vietoris-Rips complex was compared.

Proposed Method				Witness complex				
Vowel	Oth	1st	2nd	Vowel	Oth	1st	2nd	
/a/	0.064	0.644	0.131	/a/	0.126	0.645	0.177	
/e/	0.029	0.032	0.047	/e/	0.026	0.217	0.038	
/i/	0.026	0.027	0.014	/i/	0.018	0.292	0.034	
/0/	0.021	0.068	0.011	/0/	0.022	0.279	0.069	
/u/	0.016	0.032	0.020	/u/	0.015	0.332	0.029	

• The irrational flow is defined as $\frac{du}{dt} = \alpha \mod 1$, $\frac{dv}{dt} = \beta \mod 1$, where $(u, v) \in [0, 1] \times [0, 1]$.

• The trajectory is mapped into 3-dimensional Euclidean space with the mapping below:

```
x_1 = R\cos u + r\cos u\cos v,
x_2 = R\sin u + r\sin u\cos v,
```

• The number of points was n = 2000, 3000, 4000 and the parameters was l = 30 and r = 3, 6, 10.

• Computed the bottleneck distance between the clean input and the noised input.

• The performance of the proposed method was compared to that of the Witness complex.

Computational Memory

May 15, 2019