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Cooperative navigation: creating an efficient mobile robot group 

• Cooperative rescue: cooperative fire fighting, cooperative search at disaster scenes

• Cooperative work: autonomous warehouse and logistics

Cooperative rescue         Cooperative exploration     Autonomous warehouse 

and logistics

Efficient cooperative navigation to scattered targets in unknown environments

1.  BACKGROUND
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Challenges of cooperative navigation to scattered 
targets in unknown environments

• Goal : to ensure that each target is reached by a robot and the 
overall time consumption can be minimized. 

Efficient policy ?

Unknown environment  

Scattered targets

1.  BACKGROUND
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Challenges of cooperative navigation to scattered targets 
in unknown environments

All targets should be arrived. 

Minimize the overall time 

consumption and avoid collisions.

The environment is 

unknown in advance.

Targets are scattered 

at different locations.  

EfficientUnknown Scattered

Cooperative navigation calls on more intelligent and efficient decentralized control algorithms. 

Modeling-and-planning methods are inefficient.

Hard-coded methods are intractable. 

Centralized control lacks robustness and efficiency. 

1.  BACKGROUND
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Formulate cooperative navigation as a reinforcement 
learning problem

Decentralized control of cooperative navigation: 

a Markov Decision Process (MDP)

Markov Decision Process

State: st

Action:  at

Dynamic:  p(st+1|st,at)

Reward: p(rt|st,at)       

(Deep) Reinforcement learning solves MDPs through trial-and-error learning

Agent

Environment and 
other agents

action
𝑎𝑡

state
𝑠𝑡

reward
𝑟𝑡

𝑠𝑡+1

𝑟𝑡+1

2.  METHOD
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• Deep reinforcement learning directly takes high-dimensional sensory 
outputs as states.

State profile and action profile

GPS to obtain the positions of targets and robots

Other sensors to sense local environment, such as 

range finders to sense obstacles

Steering angle (assuming the speed is uniform)

State profile

Action profile

2.  METHOD
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Reward function derivation

• Reinforcement learning solves the optimal policy by maximizing the expectation of
long-term discount rewards:

• The goal of cooperative navigation is to minimize the overall time cost, which can
be transformed as to maximize the expectation of long-term discount rewards.

Overall success rewardTime cost penalty

𝑟𝑡

Collision penalty

2.  METHOD
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Hierarchical policy model of cooperative navigation 

• Unknown environment

• Limited sensing range

• Cooperate to minimize time consumption

• Select different targets dynamically

• Avoid collisions 

Cooperative navigation policy can be modeled as a combination of a dynamic 

target selection policy and a collision avoidance policy.

2.  METHOD
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Hierarchical policy vs. Single policy

Single policy learning involves larger policy 

space and more meaningless trials 

Hierarchical policy learning can shrink the unnecessary 

trials and can accelerate the learning process

2.  METHOD
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10

Cooperative navigation policy

Two coupled policies
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Continuous policy space

Both decrease the 

policy solution space

Only to observe the 

obstacles near the 

selected target direction

If no obstacles are observed in 

the selected target direction

( )t t

ca tsa a

Collision avoidance policyTarget selection policy

[1, ]t t

p tsa N o

arg max ( , )t t

ts ts p
a

a Q a o

Discrete policy space

Accelerate learning with policy hierarchies

Go straight towards 

the selected target

2.  METHOD
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Algorithm design: Interlaced deep reinforcement learning
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Target selection policy  

Unified learning structure

action-value function at time t: 

action-value function at time t: 

Collision avoidance policy  
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Loss function: No obstacles 
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Algorithm design: Interlaced deep reinforcement learning

• Homogeneous targets. Homogeneous agents share a common policy.

• Use Actor-Critic policy to learn target selection policy and collision avoidance policy

• Based on existing algorithms DQN[16] and DDPG[17] for discrete policy learning and continuous policy 

learning, respectively.   

• Use three deep neural networks to approximate                    ,                       and              .

• Update the parameters by sampling a minibatch every iteration and using the SGD method. 
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Simulation settings

• States are composed of two parts

• Randomly generate starting positions and target positions every episode

Relative position coordinates of 

targets and other agents

Ranging results of 7 detection beams 

between -90 and 90 degree.

3. EXPERIMENTS
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Convergence curves

Converge fast and gains high rewards.

Randomly allocate targets in advance

Converge fast but gain less rewards than IDRL

Centralized learning and decentralized execution

Only learn an steering policy

Converge slow and gain less rewards than IDRL 

Single policy learning algorithmm
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Navigation trajectories

(ours)

Select different targets dynamically 

during the navigation process

Compared with single policy algorithm, IDRL gets 

more efficient cooperation navigation trajectories.

3. EXPERIMENTS
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Statistical results: arrival rate and time cost

• Test 1000 episodes

• Randomly generate starting positions and target positions every episode

Obstacle size distribution

(diameter or side length) 

Compared with single policy algorithms:

IDRL achieves more than 16% improvement in mean arrival rate

IDRL reduces at least 15% mean maximum navigation time

IDRL is more robust

3. EXPERIMENTS
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We propose an interlaced deep reinforcement learning method for cooperative navigation
• Model cooperative navigation as a Markov decision process.

• Model a hierarchical cooperative navigation policy to boost learning efficiency and propose an interlaced 

deep reinforcement learning algorithm to learn two coupled policies.

Facing scattered targets in unknown environments, decentralized control problem of 

cooperative navigation is challengeable. 
• Robots need to cooperate in order to select different targets dynamically and compute efficient navigation 

paths.

•Traditional methods lack efficiency in unknown environment with randomly scattered targets.

Future work
• Test the proposed algorithm with more targets and robots.

•Add information sharing between robots by communication.  

3. CONCLUSION & FUTURE WORK
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Q&A

• Thank you very much!


