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Our objective is to assist research into the prediction of individualized 
3D audio filters for listeners based on the shape of their ears. 
Modelling ear shapes with a few dozen parameters aids establishing 
the link between ear morphology and the corresponding acoustic 
characteristics (HRIR filters). 

We examined the ability of a KPCA model to reconstruct an ear that 
was left out of the population used to create the model. This study was 
conducted using a population of 58 ears from the SYMARE database.  
•  Examples of ears reconstructed using 50 principal components: 
 
 
 
 

Target 

Reconst. 

Ear # 1 2 3 4 5 

0 0.2 0.4 0.6 0.8 1

•  Influence of the number of principal components on ear shape 
reconstruction accuracy: 

Note: colors indicate local shape mismatch 
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•  The K-PCA approach is promising. 
•  The fact that some ear shapes cannot be reconstructed accurately 

indicates that a larger and more diverse population of ears is 
required to generate a model that can morph into any ear shape. 

•  It is as yet unclear how many parameters would be required to 
morph the template ear into any ear shape with sufficient accuracy. 

The model parameters for a new (unseen) ear Sp are calculated by: 
•  Mapping the template T to Sp:  
 
•  Projecting the centred initial momentum vectors onto the principal 

components: 
 
The shape can then be reconstructed using the model by: 
•  Summing the contribution of the principal components: 

•  Shooting from the template using the obtained momentum vectors: 
 

ap(0) = M (T, Sp)

eSp = S (T, eap(0))

eap(0) = ā+Uevp

evp = UTK(ap(0)� ā)

Sp

SpT

Large deformation diffeomorphic mapping (LDDMM) is a mathematical 
framework that can be employed for the registration and morphing of 
3D shapes. In this framework a shape, S, can be represented as a 
smooth deformation of another shape, T: 
 
 
 
 
 
 
 
At any point in time the transformation is characterized by the 
momentum vectors, ai(t). Because the transformation follows a 
geodesic path, it is entirely described by the initial momentums,  ai(t). 
There are two fundamental operations in LDDMM: 
•  Mapping is the operation of calculating the deformation from shape 
T to shape Si: 

This is done by minimizing a functional J given by: 
 

•  Shooting is the operation of morphing T into an approximation of Si, 
Si, given the initial momentum vectors ai(0): 
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J(ai(t)) = f(ai(t)) + g(T, Si,ai(t))
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ai(0) = M (T, Si)

Ŝi = S (T, ai(0))

TSi

The first step in building our morphable model consists is representing 
every ear in the considered population as a transformation from an 
“average” ear shape, which we refer to as the template, T.    
  
 
 

In order to extract orthonormal basis vectors from this data, we apply a 
kernel-based principal component analysis (K-PCA). We first calculate 
the correlation between the different shapes in the Hilbert space of 
deformations. The correlation matrix, C, is given by:  
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We then form a matrix A containing 
the initial momentums for every 
shape in the population: 
 
where ai is the vector of the centred 
momentums for shape Si:  

A = [â1, â2, . . . , âL]

âi = ai(0)� ā ā =
1
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C = ATKA
where K is the kernel matrix corresponding to: (i) the kernel associated 
with the space of deformations and (ii) the template vertices. 
A singular value decomposition (SVD) is then applied to C: 

C = VDVT

Lastly, the matrix of the principal components (PC), U, is given by: 
U = AVD� 1
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Note that the PCs are orthonormal in the kernel space, i.e.: UTKU = I
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