GENERATING A MORPHABLE MODEL OF EARS

R. Zolfaghari ${ }^{1}$, N. Epain ${ }^{1}$, C.T. Jin ${ }^{1}$, J. Glaunès ${ }^{2}$, and A. Tew ${ }^{3}$
${ }^{1}$ CARLab, The University of Sydney, Australia
${ }^{2}$ MAP5, Université Paris 5 - René Descartes, France
${ }^{3}$ Department of Electronics, The University of York, UK

1. INTRODUCTION

Our objective is to assist research into the prediction of individualized 3D audio filters for listeners based on the shape of their ears. Modelling ear shapes with a few dozen parameters aids establishing the link between ear morphology and the corresponding acoustic characteristics (HRIR filters).

2. SHAPE ANALYSIS USING LDDMM

Large deformation diffeomorphic mapping (LDDMM) is a mathematical framework that can be employed for the registration and morphing of 3D shapes. In this framework a shape, S_{i}, can be represented as a smooth deformation of another shape, T :

At any point in time the transformation is characterized by the momentum vectors, $\mathbf{a}_{i}(t)$. Because the transformation follows a geodesic path, it is entirely described by the initial momentums, $\mathrm{a}_{i}(0)$.

There are two fundamental operations in LDDMM:

- Mapping is the operation of calculating the deformation from shape T to shape S_{i} :

$$
\mathbf{a}_{i}(0)=\mathscr{M}\left(T, S_{i}\right)
$$

This is done by minimizing a functional J given by:

$$
J\left(\mathbf{a}_{i}(t)\right)=\underline{f\left(\mathbf{a}_{i}(t)\right)}+g\left(T, S_{i}, \mathbf{a}_{i}(t)\right)
$$

Length of the transformation Mismatch between S_{i} and the morphed T

- Shooting is the operation of morphing T into an approximation of S_{i}, \hat{S}_{i}, given the initial momentum vectors $\mathbf{a}_{i}(0)$:

$$
\hat{S}_{i}=\mathscr{S}\left(T, \mathbf{a}_{i}(0)\right)
$$

3. KERNEL PCA

The first step in building our morphable model consists is representing every ear in the considered population as a transformation from an "average" ear shape, which we refer to as the template, T.

We then form a matrix A containing the initial momentums for every shape in the population:

$$
\mathbf{A}=\left[\hat{\mathbf{a}}_{1}, \hat{\mathbf{a}}_{2}, \ldots, \hat{\mathbf{a}}_{L}\right]
$$

where $\hat{\mathbf{a}}_{i}$ is the vector of the centred momentums for shape S_{i} :
$\hat{\mathbf{a}}_{i}=\mathbf{a}_{i}(0)-\overline{\mathbf{a}} \quad$ with $\overline{\mathbf{a}}=\frac{1}{L} \sum_{i=1}^{L} \mathbf{a}_{i}(0)$
In order to extract orthonormal basis vectors from this data, we apply a kernel-based principal component analysis (K-PCA). We first calculate the correlation between the different shapes in the Hilbert space of deformations. The correlation matrix, \mathbf{C}, is given by:

$$
\mathbf{C}=\mathbf{A}^{\top} \mathbf{K} \mathbf{A}
$$

where \mathbf{K} is the kernel matrix corresponding to: (i) the kernel associated with the space of deformations and (ii) the template vertices.
A singular value decomposition (SVD) is then applied to C:

$$
\mathbf{C}=\mathbf{V D V}^{\top}
$$

Lastly, the matrix of the principal components (PC), \mathbf{U}, is given by:

$$
\mathbf{U}=\mathbf{A V D}^{-\frac{1}{2}}
$$

Note that the PCs are orthonormal in the kernel space, i.e.: $\mathbf{U}^{\top} \mathbf{K U}=\mathbf{I}$

4. MORPHABLE MODEL OF EARS

The model parameters for a new (unseen) ear S_{p} are calculated by:

- Mapping the template T to S_{p} :

$$
\mathbf{a}_{p}(0)=\mathscr{M}\left(T, S_{p}\right)
$$

- Projecting the centred initial momentum vectors onto the principal components:

$$
\widetilde{\mathbf{v}}_{p}=\mathbf{U}^{\top} \mathbf{K}\left(\mathbf{a}_{p}(0)-\overline{\mathbf{a}}\right)
$$

The shape can then be reconstructed using the model by:

- Summing the contribution of the principal components:

$$
\widetilde{\mathbf{a}}_{p}(0)=\overline{\mathbf{a}}+\mathbf{U} \widetilde{\mathbf{v}}_{p}
$$

- Shooting from the template using the obtained momentum vectors:

$$
\widetilde{S}_{p}=\mathscr{S}\left(T, \widetilde{\mathbf{a}}_{p}(0)\right)
$$

5. RESULTS

We examined the ability of a KPCA model to reconstruct an ear that was left out of the population used to create the model. This study was conducted using a population of 58 ears from the SYMARE database.

- Examples of ears reconstructed using 50 principal components:

- Influence of the number of principal components on ear shape reconstruction accuracy:

5. CONCLUSIONS

- The K-PCA approach is promising.
- The fact that some ear shapes cannot be reconstructed accurately indicates that a larger and more diverse population of ears is required to generate a model that can morph into any ear shape.
- It is as yet unclear how many parameters would be required to morph the template ear into any ear shape with sufficient accuracy.

