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channel is represented by a Nr ⇥ Nt matrix denoted as Hd,
d = 0, . . . , Nc � 1, which, assuming a geometric channel
model [13], can be written as

Hd =
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The frequency-domain MIMO channel matrix at subcarrier k
can be written in terms of the K-point DFT of (1) as [14]

H[k] =
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Hde
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c=1 Rc have columns containing the receive and trans-
mit array steering vectors evaluated at the actual AoA/AoD
{aR(�c,r)} and {aT(✓c,r)}.

The receiver applies a linear hybrid combiner W[k] =
WRFWBB[k] 2 CNr⇥Ns , with WRF 2 CNr⇥Lr being the ana-
log combiner, and WBB[k] 2 CLr⇥Ns its baseband counter-
part. Under the assumption of perfect time-frequency syn-
chronization, the received signal at subcarrier k becomes

y[k] = W
⇤
BB[k]W

⇤
RFH[k]FRFFBB[k]s[k] + n[k], (3)

where n[k] ⇠ N
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W
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RFWRFWBB[k]

�
is the cir-

cularly symmetric complex Gaussian distributed additive
noise vector.

3. PROPOSED DESIGN

In this section, we present a novel low-complexity algorithm
to design hybrid precoders and combiners accounting for
practical per-antenna power constraints. The derivation of the
approximate all-digital precoders and combiners maximiz-
ing the spectral efficiency ca be found in [12]. Henceforth,
we will assume the all-digital precoders and combiners are
known, and thus our attention will be focused on the hybrid
factorization problem with per-antenna power constraints.

3.1. Hybrid precoder design

In [12], the hybrid factorization of the all-digital precoders is
based on the minimization of the chordal distance between the
all-digital precoders and their hybrid counterparts. Here we
propose instead to minimize their Euclidean distance, since
in that way a less complex solution can be obtained, as shown
next.

Let MNt⇥Lt(Qt) denote the set of Nt⇥Lt matrices with
unit-magnitude entries and phases taken from a discrete set
A(Qt) = {0, 2⇡

2Qt , . . . ,
2⇡(2Qt�1)

2Qt }, with Qt denoting the num-
ber of quantization bits. Also, let pj be the maximum avail-
able power budget for the j-th transmit antenna, 1  j 
Nt. Let us consider a set of all-digital precoders {F[k] 2
CNt⇥Ns}K�1

k=0 , and define the following matrices

F ,
⇥
F[0] · · ·F[K � 1]

⇤
, (size Nt ⇥NsK) (4)

FBB ,
⇥
FBB[0] · · ·FBB[K � 1]

⇤
, (size Lt ⇥NsK). (5)

Then, the problem of finding FRF and {FBB[k]}K�1
k=0 subject

to per-antenna power constraints can be stated as

min
FRF,FBB

kF� FRFFBBk2F, (6)

subject to
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e
⇤
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RF) ej  pj ,

j = 1, . . . , Nt,

The optimization problem in (6) is non-convex due to the
hardware constraints imposed by the hybrid architecture,
which are parameterized by the discrete set MNt⇥Lt(Qt).
Due to this, we propose to first obtain a reasonable approxi-
mation for FRF, and then design FBB[k] to minimize (6).

Let us consider an SVD of F = UF⌃FV
⇤
F , with UF 2

CNt⇥rank{F}, ⌃F 2 Crank{F}⇥rank{F}, VF 2 Crank{F}⇥NsK ,
with the singular values in ⌃F sorted in decreasing order.
Also, let us momentarily ignore the constraints in (6) and
find an unconstrained solution F̃RF, F̃BB to (6). This is a
low-rank approximation problem, and by the Eckart-Young
theorem the solution is given by F̃RFF̃BB = UF,1⌃F,1V

⇤
F,1,

where UF,1 2 CNt⇥Lt , VF,1 2 CNsK⇥Lt are the matri-
ces comprising the first Lt columns of UF and VF , and
⌃F,1 2 CLt⇥Lt is diagonal comprising the first Lt sin-
gular values of ⌃F . Then, F̃RF, F̃BB are given by F̃RF =
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Assuming that the receiver applies a hybrid combiner W[k] =WRFWBB[k] 2 CNr⇥Ns , the received

signal at subcarrier k can be written as

y[k] =W
⇤
BB[k]W⇤

RFH[k]FRFFBB[k]s[k]

+W
⇤
BB[k]W⇤

RFn[k],
(6)

where n[k] ⇠ CN
�
0,�2

I
�

is the circularly symmetric complex Gaussian distributed additive

noise vector.

III. PROBLEM FORMULATION

We assume perfect channel state information (CSI) at the transmitter and receiver, and focus

on the problem of designing hybrid precoders and combiners maximizing the spectral efficiency

(or, equivalently, the achievable rate), subject to per-antenna power constraints, as in [15]. Let

us define the receive SNR at the receive antenna level as SNR , Ptx/�2, with Ptx being the

transmitted power, and �2 the receive noise variance. Under transmitted Gaussian signaling, the

spectral efficiency achieved when transmitter and receiver use a precoder F[k] and a combiner

W[k] can be expressed as [23]

R(F[k],W[k])
k=0,...,K�1

=
1
K

K�1’
k=0

log2

����INs +
SNR

Ns
(W⇤[k]W[k])�1

W
⇤[k]H[k]F[k]F⇤[k]H⇤[k]W[k]

����. (7)

By taking the K-point DFT of x[n] in (1) after discarding the Zero-Prefix, and using Parseval’s

theorem, the power constraint for the t-th OFDM symbol forwarded through the j-th transmit

antenna, x j,t[k] = [F[k]] j,:st[k], is given by
K�1’
k=0
E{|x j[k]|2}  pj, j = 1, . . . , Nt, (8)

so that developing the left-handed term for the t-th transmitted OFDM symbol allows us to write
K�1’
k=0
E{|x j,t[k]|2} =

K�1’
k=0

trace{[F[k]] j,: E{st[k]s⇤
t [k]}|            {z            }

1
Ns INs

[F[k]]⇤j,:}

=
1
Ns

K�1’
k=0

k [F[k]]:, j k2
2,

(9)

which is essentially a constraint over the j-th row of the frequency-selective precoder. Therefore,

the power constraint for the j-th transmit antenna can be expressed in matrix form as

1
Ns

e
⇤
j

 
K�1’
k=0

F[k]F⇤[k]
!

e j  pj, j = 1, . . . , Nt. (10)

Goal:	maximize	
spectral	efficiency

9

In (10), e j 2 CNt⇥1 is the j-th element of the canonical vector basis, and pj > 0 is the maximum

allowable average transmit power at the j-th transmit antenna. Besides the constraints in (10),

additional hardware constraints imposed by the analog precoding stage need also be taken into

account. We consider that transmitter and receiver employ fully-connected hybrid architectures,

as shown in Fig. 1. Let MNt⇥Lt(Qt) and MNr⇥Lr(Qr) denote the sets of matrices with entries

having unit magnitude and phase taken from a discrete set of values, corresponding to Qt and

Qr quantization bits, respectively. Then, the analog precoder and combiner must also satisfy

FRF 2 MNt⇥Lt(Qt) and WRF 2 MNr⇥Lr(Qr). Since incorporating the hardware-specific constraints

into an optimization problem results in a non-convex problem, we will first remove them to

gain some insight into the design of hybrid precoders and combiners with per-antenna power

constraints. Thereafter, we will focus on finding the frequecy-selective hybrid approximations

that are best matched to the all-digital solution in the sense of minimizing their respective chordal

distances.

IV. ALL-DIGITAL DESIGN

In this section, we assume an all-digital implementation of the precoder and combiner, and

consider the problem of jointly maximizing the spectral efficiency R(F[k],W[k]) subject to the

per-antenna power constraints. This problem can be stated as

max
F[k],W[k]
k=0,...,K�1

R(F[k],W[k]) subject to
1
Ns

e
⇤
j

 
K�1’
k=0

F[k]F⇤[k]
!

e j  pj, j = 1, . . . , Nt. (11)

The closed-form solution to the problem in (11) is unknown even for the narrowband scenario

[15]. In [24], however, the problem of maximizing the mutual information was solved for the

narrowband scenario using an iterative approach based on Newton’s method. In this paper, we

follow the philosophy in [15] and extend its formulation to the frequency-selective scenario.

In [15], we proved that, in the narrowband scenario, the optimal precoder must satisfy all

per-antenna power constraints with equality. For the frequency-selective scenario, this result can

be extended as:

Lemma 1. Consider the problem�
{F?[k]}K�1

k=0 , {W?[k]}K�1
k=0

 
= arg max
{F[k]}K�1

k=0 ,{W[k]}K�1
k=0

R(F[k],W[k])

subject to
1
Ns

e
⇤
j

 
K�1’
k=0

F[k]F⇤[k]
!

e j  pj, j = 1, . . . , Nt.

(12)

2. Factorize all-digital solution into hybrid filters1.	Use	an	upper	bound	to	all-digital	solution	[1]
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1

UF,1A, F̃BB = A
�1

⌃F,1V
⇤
F,1, for an arbitrary invertible

A 2 CLt⇥Lt . Although this provides a closed-form solu-
tion for FRF, FBB, we need to take into account both the
per-antenna and hardware constraints. The analog precoder
FRF is taken as the closest element (in Euclidean distance) of
the feasible set MNt⇥Lt(Qt) to F̃RF, which is readily found
to be [FRF]j,i = ejQ(][F̃RF]j,i), 1  j  Nt, 1  i  Lt,
with Q (]x) denoting the quantized phase of xinC. It re-
mains to design the baseband precoder FBB. At this point, the
per-antenna power constraints need to be included to find an
overall solution to the original problem in (6). Developing
the cost in (6) yields

kF� FRFFBBk2F = tr {FF⇤}+ tr {FBB
⇤
FRF

⇤
FRFFBB}

� 2Re {tr {F⇤
FRFFBB}} .

(7)

If we assume that the power constraints in (6) are to be met
with equality, then the second term in (7) is a constant given
by Ns

PNt

j=1 pj . Under such assumption, the only term in (7)
that depends on FBB is the last one. Let us now define the
Lt ⇥NsK matrix G , FRF

⇤
F having SVD G = UG⌃GV

⇤
G,

with UG 2 CLt⇥Lt , ⌃G 2 CLt⇥Lt , VG 2 CNsK⇥Lt . Let us
also introduce an SVD of FBB = UBB⌃BBV

⇤
BB, with UBB 2

CLt⇥Lt , ⌃BB 2 CLt⇥Lt , VBB 2 CNsK⇥Lt . Therefore, the
problem of finding FBB accounting for the per-antenna con-
straints can be stated as

max
UBB,⌃BB,VBB

Re {tr {G⇤
FBB}}, (8)

subject to
1

Ns
e
⇤
j (FRFFBBF

⇤
BBF

⇤
RF) ej  pj , (9)

j = 1, . . . , Nt. (10)

Solving (8)-(10) is still difficult. For this reason, we will ne-
glect the influence of the per-antenna constraints on the sin-
gular vectors of FBB in order to find a suboptimal solution to
(8)-(10). Using Von Neumann’s trace inequality [15], we can
find an upper bound to the cost in (8) as follows:

Re {tr {G⇤
FBB}}  |tr {G⇤

FBB}|
= |tr {⌃GU

⇤
GFBBVG}|

 tr {⌃G⌃BB} .
(11)

The upper bound in (11) is attained by setting UBB = UG

and VBB = VG. With this choice for the singular vectors, we
now optimize the singular values under the per-antenna power
constraints. Letting gj , U

⇤
BBFRF

⇤
ej , (8) boils down to

max
{�BB,i}Lt

i=1

LtX

i=1

�G,i�BB,i, (12)

subject to
1

Ns

LtX

i=1

|gj,i|2�2
BB,i  pj , (13)

j = 1, . . . , Nt,

which is a linear program in the allocation variables {�BB,i}Lt
i=1

that can be efficiently solved using any convex optimization
tool.

3.2. Hybrid combiner design

To design the hybrid combiner W[k] = WRFWBB[k], we pur-
sue the optimization of the same metric as the one in (6). As
analyzed in [12], choosing the combiner to have orthonormal
columns preserves optimality in terms of spectral efficiency.
Thus, given an all-digital combiner {W[k]}K�1

k=0 , let us define
the following matrices

W ,
⇥
W[0] · · ·W[K � 1]

⇤
, (size Nr ⇥NsK) (14)

WBB ,
⇥
WBB[0] · · ·WBB[K � 1]

⇤
, (size Lr ⇥NsK).(15)

Then, the problem of designing WRF, {WBB[k]}K�1
k=0 can be

stated as

min
WRF,{WBB[k]}

K�1X

k=0

kW[k]�WRFWBB[k]k2F, (16)

subject to

8
<

:

WRF 2 MNt⇥Lt(Qt),
W

⇤
BB[k]W

⇤
RFWRFWBB[k] = INs ,

k = 0, . . . ,K � 1

Analogously to the design of the hybrid precoder, we first
seek a reasonable approximation for the RF combiner, and
then optimize the baseband combiner WBB. Let us consider
an SVD W = UW⌃WV

⇤
W , with UW 2 CNr⇥rank{W},

⌃W 2 Crank{W}⇥rank{W}, VW 2 CNsK⇥rank{W}. Then, if
we momentarily ignore the constraints in (16), we can again
invoke the Eckart-Young theorem to find that the uncon-
strained W̃RF, W̃BB satisfy W̃RFW̃BB = UW,1⌃W,1V

⇤
W,1.

Then, setting W̃RF = UW,1B and W̃BB = B
�1

⌃W,1V
⇤
W,1

satisfies the previous condition, for any invertible B 2
CLr⇥Lr . Now, similarly to the RF precoder, a sensible ap-
proach to design the RF combiner is to set [WRF]m,n =

ejQ(][W̃RF]m,n), 1  m  Nr, 1  n  Lr. With this design
of the RF combiner, it remains to solve (16) as a function of
WBB[k]. Let WRF = URF⌃RFV

⇤
RF be an SVD of WRF. Now,

the constraints in (16) can be rewritten as

W
⇤
BB[k]VRF⌃

2
RFV

⇤
RFWBB[k] = INs , k = 0, . . . ,K � 1,

(17)
such that the optimum baseband precoder WBB[k] is of the
form WBB[k] = VRF⌃

�1
RF ZW [k], with ZW [k] 2 CLr⇥Ns a

semi-unitary matrix. Then, it follows that WRFWBB[k] =
URFZ[k] and (16) becomes

min
Z[k]

K�1X

k=0

kW[k]�URFZW [k]k2F

subject to Z
⇤
W [k]ZW [k] = INs .

(18)

Problem (18) is recognized as an orthogonal Procrustes prob-
lem [16, p. 601], whose solution is as follows. Let C[k] ,
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A 2 CLt⇥Lt . Although this provides a closed-form solu-
tion for FRF, FBB, we need to take into account both the
per-antenna and hardware constraints. The analog precoder
FRF is taken as the closest element (in Euclidean distance) of
the feasible set MNt⇥Lt(Qt) to F̃RF, which is readily found
to be [FRF]j,i = ejQ(][F̃RF]j,i), 1  j  Nt, 1  i  Lt,
with Q (]x) denoting the quantized phase of xinC. It re-
mains to design the baseband precoder FBB. At this point, the
per-antenna power constraints need to be included to find an
overall solution to the original problem in (6). Developing
the cost in (6) yields

kF� FRFFBBk2F = tr {FF⇤}+ tr {FBB
⇤
FRF

⇤
FRFFBB}

� 2Re {tr {F⇤
FRFFBB}} .

(7)

If we assume that the power constraints in (6) are to be met
with equality, then the second term in (7) is a constant given
by Ns

PNt

j=1 pj . Under such assumption, the only term in (7)
that depends on FBB is the last one. Let us now define the
Lt ⇥NsK matrix G , FRF

⇤
F having SVD G = UG⌃GV

⇤
G,

with UG 2 CLt⇥Lt , ⌃G 2 CLt⇥Lt , VG 2 CNsK⇥Lt . Let us
also introduce an SVD of FBB = UBB⌃BBV

⇤
BB, with UBB 2

CLt⇥Lt , ⌃BB 2 CLt⇥Lt , VBB 2 CNsK⇥Lt . Therefore, the
problem of finding FBB accounting for the per-antenna con-
straints can be stated as

max
UBB,⌃BB,VBB

Re {tr {G⇤
FBB}}, (8)

subject to
1

Ns
e
⇤
j (FRFFBBF

⇤
BBF

⇤
RF) ej  pj , (9)

j = 1, . . . , Nt. (10)

Solving (8)-(10) is still difficult. For this reason, we will ne-
glect the influence of the per-antenna constraints on the sin-
gular vectors of FBB in order to find a suboptimal solution to
(8)-(10). Using Von Neumann’s trace inequality [15], we can
find an upper bound to the cost in (8) as follows:

Re {tr {G⇤
FBB}}  |tr {G⇤

FBB}|
= |tr {⌃GU

⇤
GFBBVG}|

 tr {⌃G⌃BB} .
(11)

The upper bound in (11) is attained by setting UBB = UG

and VBB = VG. With this choice for the singular vectors, we
now optimize the singular values under the per-antenna power
constraints. Letting gj , U

⇤
BBFRF

⇤
ej , (8) boils down to

max
{�BB,i}Lt

i=1

LtX

i=1

�G,i�BB,i, (12)

subject to
1

Ns

LtX

i=1

|gj,i|2�2
BB,i  pj , (13)

j = 1, . . . , Nt,

which is a linear program in the allocation variables {�BB,i}Lt
i=1

that can be efficiently solved using any convex optimization
tool.

3.2. Hybrid combiner design

To design the hybrid combiner W[k] = WRFWBB[k], we pur-
sue the optimization of the same metric as the one in (6). As
analyzed in [12], choosing the combiner to have orthonormal
columns preserves optimality in terms of spectral efficiency.
Thus, given an all-digital combiner {W[k]}K�1

k=0 , let us define
the following matrices

W ,
⇥
W[0] · · ·W[K � 1]

⇤
, (size Nr ⇥NsK) (14)

WBB ,
⇥
WBB[0] · · ·WBB[K � 1]

⇤
, (size Lr ⇥NsK).(15)

Then, the problem of designing WRF, {WBB[k]}K�1
k=0 can be

stated as

min
WRF,{WBB[k]}

K�1X

k=0

kW[k]�WRFWBB[k]k2F, (16)

subject to

8
<

:

WRF 2 MNt⇥Lt(Qt),
W

⇤
BB[k]W

⇤
RFWRFWBB[k] = INs ,

k = 0, . . . ,K � 1

Analogously to the design of the hybrid precoder, we first
seek a reasonable approximation for the RF combiner, and
then optimize the baseband combiner WBB. Let us consider
an SVD W = UW⌃WV

⇤
W , with UW 2 CNr⇥rank{W},

⌃W 2 Crank{W}⇥rank{W}, VW 2 CNsK⇥rank{W}. Then, if
we momentarily ignore the constraints in (16), we can again
invoke the Eckart-Young theorem to find that the uncon-
strained W̃RF, W̃BB satisfy W̃RFW̃BB = UW,1⌃W,1V

⇤
W,1.

Then, setting W̃RF = UW,1B and W̃BB = B
�1

⌃W,1V
⇤
W,1

satisfies the previous condition, for any invertible B 2
CLr⇥Lr . Now, similarly to the RF precoder, a sensible ap-
proach to design the RF combiner is to set [WRF]m,n =

ejQ(][W̃RF]m,n), 1  m  Nr, 1  n  Lr. With this design
of the RF combiner, it remains to solve (16) as a function of
WBB[k]. Let WRF = URF⌃RFV

⇤
RF be an SVD of WRF. Now,

the constraints in (16) can be rewritten as

W
⇤
BB[k]VRF⌃

2
RFV

⇤
RFWBB[k] = INs , k = 0, . . . ,K � 1,

(17)
such that the optimum baseband precoder WBB[k] is of the
form WBB[k] = VRF⌃

�1
RF ZW [k], with ZW [k] 2 CLr⇥Ns a

semi-unitary matrix. Then, it follows that WRFWBB[k] =
URFZ[k] and (16) becomes

min
Z[k]

K�1X
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kW[k]�URFZW [k]k2F

subject to Z
⇤
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Problem (18) is recognized as an orthogonal Procrustes prob-
lem [16, p. 601], whose solution is as follows. Let C[k] ,
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A 2 CLt⇥Lt . Although this provides a closed-form solu-
tion for FRF, FBB, we need to take into account both the
per-antenna and hardware constraints. The analog precoder
FRF is taken as the closest element (in Euclidean distance) of
the feasible set MNt⇥Lt(Qt) to F̃RF, which is readily found
to be [FRF]j,i = ejQ(][F̃RF]j,i), 1  j  Nt, 1  i  Lt,
with Q (]x) denoting the quantized phase of xinC. It re-
mains to design the baseband precoder FBB. At this point, the
per-antenna power constraints need to be included to find an
overall solution to the original problem in (6). Developing
the cost in (6) yields

kF� FRFFBBk2F = tr {FF⇤}+ tr {FBB
⇤
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� 2Re {tr {F⇤
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If we assume that the power constraints in (6) are to be met
with equality, then the second term in (7) is a constant given
by Ns

PNt

j=1 pj . Under such assumption, the only term in (7)
that depends on FBB is the last one. Let us now define the
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Solving (8)-(10) is still difficult. For this reason, we will ne-
glect the influence of the per-antenna constraints on the sin-
gular vectors of FBB in order to find a suboptimal solution to
(8)-(10). Using Von Neumann’s trace inequality [15], we can
find an upper bound to the cost in (8) as follows:

Re {tr {G⇤
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The upper bound in (11) is attained by setting UBB = UG

and VBB = VG. With this choice for the singular vectors, we
now optimize the singular values under the per-antenna power
constraints. Letting gj , U
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3.2. Hybrid combiner design

To design the hybrid combiner W[k] = WRFWBB[k], we pur-
sue the optimization of the same metric as the one in (6). As
analyzed in [12], choosing the combiner to have orthonormal
columns preserves optimality in terms of spectral efficiency.
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Analogously to the design of the hybrid precoder, we first
seek a reasonable approximation for the RF combiner, and
then optimize the baseband combiner WBB. Let us consider
an SVD W = UW⌃WV

⇤
W , with UW 2 CNr⇥rank{W},

⌃W 2 Crank{W}⇥rank{W}, VW 2 CNsK⇥rank{W}. Then, if
we momentarily ignore the constraints in (16), we can again
invoke the Eckart-Young theorem to find that the uncon-
strained W̃RF, W̃BB satisfy W̃RFW̃BB = UW,1⌃W,1V

⇤
W,1.

Then, setting W̃RF = UW,1B and W̃BB = B
�1

⌃W,1V
⇤
W,1

satisfies the previous condition, for any invertible B 2
CLr⇥Lr . Now, similarly to the RF precoder, a sensible ap-
proach to design the RF combiner is to set [WRF]m,n =

ejQ(][W̃RF]m,n), 1  m  Nr, 1  n  Lr. With this design
of the RF combiner, it remains to solve (16) as a function of
WBB[k]. Let WRF = URF⌃RFV

⇤
RF be an SVD of WRF. Now,

the constraints in (16) can be rewritten as

W
⇤
BB[k]VRF⌃

2
RFV
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RFWBB[k] = INs , k = 0, . . . ,K � 1,

(17)
such that the optimum baseband precoder WBB[k] is of the
form WBB[k] = VRF⌃

�1
RF ZW [k], with ZW [k] 2 CLr⇥Ns a

semi-unitary matrix. Then, it follows that WRFWBB[k] =
URFZ[k] and (16) becomes

min
Z[k]

K�1X

k=0

kW[k]�URFZW [k]k2F

subject to Z
⇤
W [k]ZW [k] = INs .
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Problem (18) is recognized as an orthogonal Procrustes prob-
lem [16, p. 601], whose solution is as follows. Let C[k] ,
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U
⇤
RFW[k], with SVD C[k] = UC [k]⌃C [k]V

⇤
C [k]. Then, the

solution to (??) is ZW [k] = UC [k]V
⇤
C [k]. This concludes the

design of the hybrid combiner.

4. RESULTS

In this section, we provide numerical results on the per-
formance of the proposed hybrid precoding and combin-
ing strategy with per-antenna power constraints (PPC). We
focus on both the spectral efficiency and the per-antenna
power consumption, thereby showing the relationship be-
tween these parameters. The SNR in the system is defined
as SNR , Pt/�2, and Pt = 1 for illustration. If we define
the effective channel after combining, at the k-th subcarrier,
as Hef[k] = W

⇤[k]H[k]F[k], then the average achievable
spectral efficiency is given by

R =
1

K

K�1X

k=0

log2

����INs +
SNR

Ns
Hef[k]H

⇤
ef[k]

���� . (19)

We use the frequency-selective channel model in (??), with
small-scale parameters obtained from the 3GPP Urban Macro-
cell (UMa) 5G channel model (NR) [?], which is imple-
mented in QuaDRiGa channel simulator [?], [?]. The Rician
factor is chosen to be �10 dB for illustration. The transmitter
and receiver are equipped with Uniform Linear Arrays (ULA)
having Nt = 64 and Nr = 16 antennas with �/2 separation,
respectively. The number of RF chains is set to Lt = 4
and Lr = 2. Results are averaged over 100 channel real-
izations, and K = 64 subcarriers are employed. Using the
all-digital precoders developed in [?], we compare the pro-
posed PPC design with the conventional all-digital precoders
and combiners taken as the dominant right and left singular
vectors of the channel, and power allocation is performed
using waterfilling with a total power constraint (TPC). For
the PPC design, we set a uniform power constraint pj = p0
8j for illustration. In Fig. ??, we show the average spec-
tral efficiency obtained for both TPC and PPC designs. The
performance of the proposed PPC design is close to that of
the TPC design, yet there is a performance loss increasing
with Ns. This effect comes from the difficulty of obtaining
an accurate hybrid factorization when Ns increases, and from
our pursuing an optimization of the Euclidean distance with
per-antenna constraints, whilst the TPC design maximizes
the spectral efficiency with a total power constraint. Fig. ??
shows the complementary cumulative distribution (CCDF)
for the average power delivered to a given antenna. The pro-
posed PPC design is shown to always meet the per-antenna
constraints, yet not necessarily with equality. The TPC design
yields a CCDF with larger variance across different antennas,
which increases as Ns decreases. For instance, if a probabil-
ity of 10�3 of not exceeding the maximum antenna budget is
desired, the input power would need to be reduced by approx-
imately 3 and 4.5 dB for the all-digital TPC design, which
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Fig. 2: Average spectral efficiency obtained with the proposed
PPC and TPC designs. The number of transmit and receive
antennas is Nt = 64 and Nr = 16, and the number of RF
chains is Lt = 4 and Lr = 2.
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would shift the corresponding curves in Fig. ?? to the right
by the same amount.

5. CONCLUSIONS

In this paper, we developed a low-complexity solution to the
problem of finding hybrid precoders and combiners maximiz-
ing spectral efficiency in a wideband OFDM/SC-FDE MIMO
system with per-antenna power constraints. Despite the math-
ematical approximations adopted in our derivation, numerical
results show the closeness of the proposed design method to
that of the all-digital solution. Furthermore, we also showed
the importance of considering per-antenna power constraints
using the sample distribution of the power delivered to each
antenna, highlighting that the per-antenna constraints are al-
ways met, yet not with equality in every case.
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C [k]. Then, the

solution to (??) is ZW [k] = UC [k]V
⇤
C [k]. This concludes the

design of the hybrid combiner.

4. RESULTS

In this section, we provide numerical results on the per-
formance of the proposed hybrid precoding and combin-
ing strategy with per-antenna power constraints (PPC). We
focus on both the spectral efficiency and the per-antenna
power consumption, thereby showing the relationship be-
tween these parameters. The SNR in the system is defined
as SNR , Pt/�2, and Pt = 1 for illustration. If we define
the effective channel after combining, at the k-th subcarrier,
as Hef[k] = W

⇤[k]H[k]F[k], then the average achievable
spectral efficiency is given by

R =
1

K

K�1X

k=0

log2

����INs +
SNR

Ns
Hef[k]H

⇤
ef[k]

���� . (19)

We use the frequency-selective channel model in (??), with
small-scale parameters obtained from the 3GPP Urban Macro-
cell (UMa) 5G channel model (NR) [?], which is imple-
mented in QuaDRiGa channel simulator [?], [?]. The Rician
factor is chosen to be �10 dB for illustration. The transmitter
and receiver are equipped with Uniform Linear Arrays (ULA)
having Nt = 64 and Nr = 16 antennas with �/2 separation,
respectively. The number of RF chains is set to Lt = 4
and Lr = 2. Results are averaged over 100 channel real-
izations, and K = 64 subcarriers are employed. Using the
all-digital precoders developed in [?], we compare the pro-
posed PPC design with the conventional all-digital precoders
and combiners taken as the dominant right and left singular
vectors of the channel, and power allocation is performed
using waterfilling with a total power constraint (TPC). For
the PPC design, we set a uniform power constraint pj = p0
8j for illustration. In Fig. ??, we show the average spec-
tral efficiency obtained for both TPC and PPC designs. The
performance of the proposed PPC design is close to that of
the TPC design, yet there is a performance loss increasing
with Ns. This effect comes from the difficulty of obtaining
an accurate hybrid factorization when Ns increases, and from
our pursuing an optimization of the Euclidean distance with
per-antenna constraints, whilst the TPC design maximizes
the spectral efficiency with a total power constraint. Fig. ??
shows the complementary cumulative distribution (CCDF)
for the average power delivered to a given antenna. The pro-
posed PPC design is shown to always meet the per-antenna
constraints, yet not necessarily with equality. The TPC design
yields a CCDF with larger variance across different antennas,
which increases as Ns decreases. For instance, if a probabil-
ity of 10�3 of not exceeding the maximum antenna budget is
desired, the input power would need to be reduced by approx-
imately 3 and 4.5 dB for the all-digital TPC design, which
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Fig. 2: Average spectral efficiency obtained with the proposed
PPC and TPC designs. The number of transmit and receive
antennas is Nt = 64 and Nr = 16, and the number of RF
chains is Lt = 4 and Lr = 2.
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would shift the corresponding curves in Fig. ?? to the right
by the same amount.

5. CONCLUSIONS

In this paper, we developed a low-complexity solution to the
problem of finding hybrid precoders and combiners maximiz-
ing spectral efficiency in a wideband OFDM/SC-FDE MIMO
system with per-antenna power constraints. Despite the math-
ematical approximations adopted in our derivation, numerical
results show the closeness of the proposed design method to
that of the all-digital solution. Furthermore, we also showed
the importance of considering per-antenna power constraints
using the sample distribution of the power delivered to each
antenna, highlighting that the per-antenna constraints are al-
ways met, yet not with equality in every case.
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Fig. 1: Illustration of the structure of a hybrid MIMO architecture, which include analog and digital precoders and combiners.

channel is represented by a Nr ⇥ Nt matrix denoted as Hd,
d = 0, . . . , Nc � 1, which, assuming a geometric channel
model [?], can be written as

Hd =

s
NtNr

⇢L
PC

c=1 Rc

CX

c=1

RcX

r=1

↵c,rprc(dTs � ⌧c,r)⇥

⇥ aR(�c,r)a
⇤
T(✓c,r),

(1)

The frequency-domain MIMO channel matrix at subcarrier k
can be written in terms of the K-point DFT of (??) as [?]

H[k] =
Nc�1X

d=0

Hde
�j 2⇡k

K d = ARG[k]A
⇤
T, (2)

where G[k] 2 C
PC

c=1 Rc⇥
PC

c=1 Rc is diagonal with non-
zero complex entries, and AR 2 CNr⇥

PC
c=1 Rc and AT 2

CNt⇥
PC

c=1 Rc have columns containing the receive and trans-
mit array steering vectors evaluated at the actual AoA/AoD
{aR(�c,r)} and {aT(✓c,r)}.

The receiver applies a linear hybrid combiner W[k] =
WRFWBB[k] 2 CNr⇥Ns , with WRF 2 CNr⇥Lr being the ana-
log combiner, and WBB[k] 2 CLr⇥Ns its baseband counter-
part. Under the assumption of perfect time-frequency syn-
chronization, the received signal at subcarrier k becomes

y[k] = W
⇤
BB[k]W

⇤
RFH[k]FRFFBB[k]s[k] + n[k], (3)

where n[k] ⇠ N
�
0,�2

W
⇤
BB[k]W

⇤
RFWRFWBB[k]

�
is the cir-

cularly symmetric complex Gaussian distributed additive
noise vector.

3. PROPOSED DESIGN

In this section, we present a novel low-complexity algorithm
to design hybrid precoders and combiners accounting for
practical per-antenna power constraints. The derivation of
the approximate all-digital precoders and combiners maxi-
mizing the spectral efficiency ca be found in [?]. Henceforth,
we will assume the all-digital precoders and combiners are
known, and thus our attention will be focused on the hybrid
factorization problem with per-antenna power constraints.

3.1. Hybrid precoder design

In [?], the hybrid factorization of the all-digital precoders is
based on the minimization of the chordal distance between the
all-digital precoders and their hybrid counterparts. Here we
propose instead to minimize their Euclidean distance, since
in that way a less complex solution can be obtained, as shown
next.

Let MNt⇥Lt(Qt) denote the set of Nt⇥Lt matrices with
unit-magnitude entries and phases taken from a discrete set
A(Qt) = {0, 2⇡

2Qt , . . . ,
2⇡(2Qt�1)

2Qt }, with Qt denoting the num-
ber of quantization bits. Also, let pj be the maximum avail-
able power budget for the j-th transmit antenna, 1  j 
Nt. Let us consider a set of all-digital precoders {F[k] 2
CNt⇥Ns}K�1

k=0 , and define the following matrices

F ,
⇥
F[0] · · ·F[K � 1]

⇤
, (size Nt ⇥NsK) (4)

FBB ,
⇥
FBB[0] · · ·FBB[K � 1]

⇤
, (size Lt ⇥NsK). (5)

Then, the problem of finding FRF and {FBB[k]}K�1
k=0 subject

to per-antenna power constraints can be stated as

min
FRF,FBB

kF� FRFFBBk2F, (6)

subject to

8
<

:

FRF 2 MNt⇥Lt(Qt),
1
Ns

e
⇤
j (FRFFBBF

⇤
BBF

⇤
RF) ej  pj ,

j = 1, . . . , Nt,

The optimization problem in (??) is non-convex due to the
hardware constraints imposed by the hybrid architecture,
which are parameterized by the discrete set MNt⇥Lt(Qt).
Due to this, we propose to first obtain a reasonable approxi-
mation for FRF, and then design FBB[k] to minimize (??).

Let us consider an SVD of F = UF⌃FV
⇤
F , with UF 2

CNt⇥rank{F}, ⌃F 2 Crank{F}⇥rank{F}, VF 2 Crank{F}⇥NsK ,
with the singular values in ⌃F sorted in decreasing order.
Also, let us momentarily ignore the constraints in (??) and
find an unconstrained solution F̃RF, F̃BB to (??). This is a
low-rank approximation problem, and by the Eckart-Young
theorem the solution is given by F̃RFF̃BB = UF,1⌃F,1V

⇤
F,1,

where UF,1 2 CNt⇥Lt , VF,1 2 CNsK⇥Lt are the matri-
ces comprising the first Lt columns of UF and VF , and
⌃F,1 2 CLt⇥Lt is diagonal comprising the first Lt sin-
gular values of ⌃F . Then, F̃RF, F̃BB are given by F̃RF =

Channel	samples	from	3GPP	5G	
NR	UMa (Rice	factor	-10	dB)

Reasonably	good	
performance	of	
PPC	design

Power	backoff of	3-4	dB	
needed	for	TPC	design

Per-antenna constraints
fulfilled in every case


