Dimitris Ampeliotis \& Kostas Berberidis

University of Patras, Computer Engineering \& Informatics Dept, Greece

1. At A Glance

- Distributed estimation of a parameter vector in a network of sensor nodes with ambiguous measurements is considered
- Non-convex constraint sets may be required at the nodes, in order to accurately model the local ambiguities
- The non-convexity is treated by expressing the involved non-convex sets as unions of convex sets, such that, for each node, only one such convex set is actually relevant
- The problem of selecting the relevant sets is modelled as a non-cooperative game, a potential function is derived, and an algorithm is proposed.

4. PROBLEM DECOMPOSITION

Assumption A1: The intersection \mathcal{C} is nonempty. Furthermore, there exists exactly one set $\mathcal{S}_{n, l_{n}}$ for each node n with

$$
\mathcal{S}_{n, t, m} \cap \subset \neq \emptyset
$$

In other words, for each agent, there exists exactly one convex set, say $\mathcal{S}_{n, l_{n}}$ (selected among all $S_{n, k}$ sets), whose intersection with all such sets of the other nodes is non-empty.

When Assumption A1 holds, the considered problem is equivalent to solving the following two sub problems

- Sub-problem P1: Identify the sets $\mathcal{S}_{n, l_{n}}, n \in$ \mathcal{N}, and
- Sub-problem P2: Compute $\theta \in \mathcal{S}_{n, l_{n}}$

Sub-problem P2 has been extensively studied in literature, and can be solved by using the projections onto convex sets (POCS) approach ${ }^{a}$ The focus here is on sub-problem P1
aL.G. Gubin, B.T. Polyak, and E.V. Raik, "The method of pro-
jections for finding the common point of conver sets" USSR jections for finding the common point of convex sets," USSR Computational Mathematics and Mathematical Physics, vol. 7 no. 6, pp. 1-24, 1967

2. Motivating example and modeling

- Consider a scenario in which two (or more) nodes utilize Angle of Arrival (AoA) measurements to localize a source, in an environment where reflections are present
- Some nodes compute multiple AoAs, however, only one is relevant to the source of interes

- Each node n adopts a set-theoretic approach, by considering that the unknown parameter vec tor $\theta \in \mathcal{C}_{n}$ where \mathcal{C}_{n} is some proper, possibly non-convex, constraints set
- In this work we model such sets as

$$
\mathcal{C}_{n}=\bigcup_{k=1}^{k_{n}} \mathcal{S}_{n, k},
$$

where $\mathcal{S}_{n, k}$ denote convex sets and k_{n} is the number of such sets at node n, used to con struct the non-convex set \mathcal{C}_{n}

5. A NON-COOPERATIVE POTENTIAL GAME FOR SUb-PROBLEM P1

Consider a non-cooperative game in strategic form

- The set of players is the set of nodes \mathcal{N}. Each player has an action set

$$
\mathcal{A}_{n}=\left\{\mathcal{S}_{n, 1}, \mathcal{S}_{n, 2}, \ldots, \mathcal{S}_{n, k_{n}}\right\}
$$

$$
\phi(\alpha)=\sum_{n \in \mathcal{N}} \sum_{k \in \mathcal{N}_{n}} \frac{I\left(\alpha_{n}, \alpha_{k}\right)}{2}
$$

- A strategy $\alpha_{n} \in \mathcal{A}_{n}$ for node/player n is the selection of one of its convex sets
- A strategy profile α is a selection of strategies, one for each player. Also, $\alpha \in \mathcal{A}=\mathcal{A}_{1} \times$ $\mathcal{A}_{2} \ldots \mathcal{A}_{N}$ and $\alpha=\left(\alpha_{n}, \alpha_{-n}\right)$

Utility function at node/player n with neighbour$\operatorname{hood} \mathcal{N}_{n}$

$$
u_{n}(\alpha)=\sum_{k \in \mathcal{N}_{n}} I\left(\alpha_{n}, \alpha_{k}\right),
$$

where $I\left(\mathcal{S}_{a}, \mathcal{S}_{b}\right)$ is an indicator function defined as

$$
I\left(\mathcal{S}_{a}, \mathcal{S}_{b}\right)=\left\{\begin{array}{lr}
1, & \text { if } \mathcal{S}_{a} \bigcap \mathcal{S}_{b} \neq \emptyset \\
0, & \text { otherwise }
\end{array}\right.
$$

- It counts the number of neighbours that have selected a set with non-empty intersection with the set selected by node n. \qquad

${ }^{a}$ J. R Marden, G. Arslan, and J. S Shamma, "Connections between cooperative control and potential games illustrated on the consensus problem," in ECC 2007. IEEE, 2007, pp. 4604-4611
ames," Games and economic behavior, vol. 14, no. 1, pp. 124-143, 1996

PROBLEM FORMULATION

Consensus Problem P:

$$
\begin{aligned}
& \text { Find } \theta \in \mathcal{C}=\bigcap_{n=1}^{N} \mathcal{C}_{n}, \\
& \text { where } \mathcal{C}_{n}=\bigcup_{k=1}^{k_{n}} \mathcal{S}_{n, k},
\end{aligned}
$$

are non-convex sets, expressed as unions of the convex sets $\mathcal{S}_{n, k}$.

It constitutes a particular form of a non-convex feasibility problem.

6. NUMERICAL RESULTS

- $N=200$ nodes, uniformly deployed in the unit square (40 different realizations). A source is placed at $(35,35)$. The signal is received directly and via two reflections
- Various communication ranges were tested, only realizations that resulted to connected graphs were considered. Nodes perform 6000 strategy changes.
- The average (across nodes and runs) probability for selecting the correct sets is given

We can see that, in all cases, the probability reaches the value 1 , when the communication range is high enough, i.e., when the communication graph becomes more strongly connected.

