SANAS

Stochastic Adaptive Neural Architecture Search for Keyword Spotting

SCIENCES SORBONNE UNIVERSITÉ

ICASSP 2019

Tom Veniat Olivier Schwander Ludovic Denoyer

facebook Al Research

Deep Learning Success

State of the art in a number of domains (vision, speech, etc...)

Deep Learning Success

- **State of the art** in a number of domains (vision, speech, etc...)
- Example in computer vision : **plenty** of different architectures.

AlexNet [Krizhevsky, Sutskever, and Hinton 2012]

ResNet [He et al. 2015]

DenseNet [Huang, Liu, and Weinberger 2016]

Deep Learning Success

- **State of the art** in a number of domains (vision, speech, etc...)
- Example in computer vision : **plenty** of different architectures.

AlexNet [Krizhevsky, Sutskever, and Hinton 2012]

ResNet [He et al. 2015]

DenseNet [Huang, Liu, and Weinberger 2016]

Need for an automatic way to discover architectures

Existing approaches

Searches

SANAS: Stochastic Adaptive Neural Architecture Search for Keyword Spotting

Existing approaches

- Searches
- Evolutionary methods

Existing approaches

- Searches
- Evolutionary methods
- Learning
 - Example using Recurrent Neural Networks and Reinforcement

Neural architecture search with RL, [Zoph and Le 2016]

Existing approaches

- Searches
- Evolutionary methods
- Learning
 - Example using Recurrent Neural Networks and Reinforcement

Neural architecture search with RL, [Zoph and Le 2016]

Existing approaches limitations

- Mainly focused on performance
- Ignore real world constraints

Problematic

Architecture search under budget constraints

Problematic

Architecture search under budget constraints

Contributions

- New model : Budgeted Super Networks
- Joint optimization on performance and inference cost
 - Costs : Time, Memory, Parallelization
 - Custom costs based on production infrastructure
 - No assumption on the cost nature

Budgeted Super Networks

Definition

- A Super Network is a DAG of layers $(I_1, ..., I_N)$
- I_1 is the input layer and I_N is the output layer
- *E* = {*e*_{*i*,*j*}} ∈ {0, 1}^{*N*×*N*} is the edge between *I_i* and *I_j* and is associated with function *f_{i,j}* parametrized by *θ*_{*i,j*}

Definition

- A Super Network is a DAG of layers $(I_1, ..., I_N)$
- I_1 is the input layer and I_N is the output layer
- $E = \{e_{i,j}\} \in \{0,1\}^{N \times N}$ is the edge between I_i and I_j and is associated with function $f_{i,j}$ parametrized by $\theta_{i,j}$

Inference

- Input: $l_1(x, E, \theta) = x$
- **Layer Computation:** $l_i(x, E, \theta) = \sum_k e_{k,i} f_{k,i}(l_k(x, E, \theta))$
- **Output:** $f(x, E, \theta) = I_N(x, E, \theta)$
- Learning can be done by back-propagation

Super Network Inference

Algorithm 1: SN Forward

Data: x, E, θ $l_1 \leftarrow x$; for $i \in [2..N]$ do $l_i \leftarrow \sum_{k < i} e_{k,i} f_{k,i}(l_k; \theta_{k,i})$; end

// Init the first layer

// Propagate through the
super network

Budgeted Super Networks

Idea: Identifying a sub-network

- Keep a good accuracy
- Reduce cost

Figure 2: Convolutional Neural Fabrics [Saxena and Verbeek 2016]

Budgeted Super Networks

Idea: Identifying a sub-network

- Keep a good accuracy
- Reduce cost

Figure 2: Convolutional Neural Fabrics [Saxena and Verbeek 2016]

Notation

- $H \in \{0,1\}^{N \times N}$ such that $H \odot E$ defines a (sub) Super Network
- $C(H \odot E)$ the cost for computing $f(x, H \odot E, \theta)$

SANAS: Stochastic Adaptive Neural Architecture Search for Keyword Spotting

Learning under budget constraints

$$\begin{aligned} H^*, \theta^* &= \arg\min_{H,\theta} \frac{1}{\ell} \sum_i \Delta(f(x^i, H \odot E, \theta), y^i), \\ \text{under constraint} : \ C(H \odot E) \leq \mathbf{C} \end{aligned}$$

Learning under budget constraints

$$\begin{array}{l} H^*, \theta^* = \arg\min_{H,\theta} \frac{1}{\ell} \sum_i \Delta(f(x^i, H \odot E, \theta), y^i), \\ \text{under constraint} : \ C(H \odot E) \leq \mathbf{C} \end{array}$$

Soft version

$$egin{aligned} &\mathcal{H}^*, heta^* = rg\min_{\mathcal{H}, heta} rac{1}{\ell} \sum_i \Delta(f(x^i, \mathcal{H} \odot \mathcal{E}, heta), y^i) \ &+ \lambda \max(0, \mathcal{C}(\mathcal{H} \odot \mathcal{E}) - \mathbf{C}) \end{aligned}$$

Combinatorial Problem

- How to explore the **discrete** architecture space ?
- How to handle the **unknown** cost function $C(H \odot E)$?

Combinatorial Problem

- How to explore the **discrete** architecture space ?
- How to handle the **unknown** cost function $C(H \odot E)$?

Idea

- Reformulate the learning problem as a **stochastic** problem.
- Apply Reinforcement Learning techniques to overcome the combinatorial problem.

Stochastic Super Network

- We consider a matrix of probabilities Γ
- At each inference, H is sampled following $H \sim \Gamma$

Stochastic Super Network Inference

Algorithm 2: SSN ForwardData: x, E, Γ, θ $H \sim \Gamma$; $l_1 \leftarrow x$;for $i \in [2..N]$ do $l_i \leftarrow \sum_{k < i} e_{k,i} h_{k,i} f_{k,i}(l_k; \theta_{k,i})$;end

// Sample an architecture

// Propagate through the sampled network

Stochastic learning problem

$$\begin{split} \Gamma^*, \theta^* &= \arg\min_{\Gamma, \theta} \frac{1}{\ell} \sum_{i} \mathbb{E}_{H \sim \Gamma} \left[\Delta(f(x^i, H \odot E, \theta), y^i) \right. \\ &+ \lambda \max(0, C(H \odot E) - \mathbf{C}) \right] \end{split}$$

Solving this problem is equivalent to solving the original constrained problem.

■ Can be optimized by SGD using REINFORCE.

Deriving the stochastic learning problem

Let us define:

$$\mathcal{D}(x, y, \theta, E, H) = \Delta(f(x, H \odot E, \theta), y) + \lambda \max(0, C(H \odot E) - \mathbf{C})$$
$$\mathcal{L}(x, y, E, \Gamma, \theta) = \mathbb{E}_{H \sim \Gamma} [\mathcal{D}(x, y, \theta, E, H)]$$

We have:

$$\begin{aligned} \nabla_{\theta,\Gamma} \mathcal{L}(x,y,E,\Gamma,\theta) &= \sum_{H} P(H|\Gamma) \left[(\nabla_{\theta,\Gamma} \log P(H|\Gamma)) \mathcal{D}(x,y,\theta,E,H) \right] \\ &+ \sum_{H} P(H|\Gamma) \left[\nabla_{\theta,\Gamma} \Delta(f(x,H \odot E,\theta),y) \right] \end{aligned}$$

From static

$\mathcal{L}(x, y, E, \Gamma, \theta) = \mathbb{E}_{H \sim \Gamma} \left[\Delta(f(x, H \odot E, \theta), y) + \lambda \max(0, C(H \odot E) - \mathbf{C}) \right]$

From static

$\mathcal{L}(x, y, E, \Gamma, \theta) = \mathbb{E}_{H \sim \Gamma} \left[\Delta(f(x, H \odot E, \theta), y) + \lambda \max(0, C(H \odot E) - \mathbf{C}) \right]$

To dynamic

$$\mathcal{L}(x, y, \theta) = \mathbb{E}_{\mathcal{A}} \Big[\sum_{t=1}^{\#x} [\Delta(f(z_t, x_t, \theta, \mathcal{A}_t), y_t) + \lambda C(\mathcal{A}_t)] \Big]$$

SANAS: Stochastic Adaptive Neural Architecture Search for Keyword Spotting

General Model

Figure 3: SANAS Architecture unrolled on sequence of length K.

SANAS

Keyword Spotting - Speech Commands Dataset [Warden 2018]

- 65000 short audio clips
- 30 common words
- 12 classes

SANAS

Keyword Spotting - Speech Commands Dataset [Warden 2018]

- 65000 short audio clips
- 30 common words
- 12 classes

Streaming dataset

SANAS: Stochastic Adaptive Neural Architecture Search for Keyword Spotting

Keyword Spotting - Model

■ based on *cnn-trad-fpool3* [Sainath and Parada 2015]

Figure 4: SANAS architecture for Keyword Spotting

Quantitative results

Match	Correct	Wrong	FA	FLOPs per frame
cnn-trad-fpool3				
81.7%	72.8%	8.9%	0.0%	124.6M
cnn-trad-fpool3 + shortcut connections				
82.9%	77.9%	5.0%	0.3%	137.3M
SANAS				
61.2%	53.8%	7.3%	0.7%	519.2K
62.0%	57.3%	4.8%	0.1%	22.9M
86.5%	80.7%	5.8%	0.3%	37.7M
86.3%	80.6%	5.7%	0.2%	48.8M
81.7%	76.4%	5.3%	0.1%	94.0M
81.4%	76.3%	5.2%	0.2%	105.4M

Table 1: Evaluation of models on 1h of audio.

Quantitative results

Figure 5: Cost/accuracy curves on test set.

SANAS

Training dynamics

Figure 6: Cost per word during training

Perspectives

- Use new models (Currently training on Resnets)
- Test other sound datasets
- Evaluate over different tasks (Video, Event detection, RL ...)

References

References I

- He, Kaiming et al. (2015). "Deep Residual Learning for Image Recognition". In: CoRR abs/1512.03385. url: http://arxiv.org/abs/1512.03385.
- Huang, Gao, Zhuang Liu, and Kilian Q. Weinberger (2016). "Densely Connected Convolutional Networks". In: CoRR abs/1608.06993. url: http://arxiv.org/abs/1608.06993.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (2012). "ImageNet Classification with Deep Convolutional Neural Networks". In: Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States. Pp. 1106–1114. url: http://papers.nips.cc/paper/4824-imagenet-classification-with-deepconvolutional-neural-networks.

Sainath, Tara N. and Carolina Parada (2015). "Convolutional neural networks for small-footprint keyword spotting". In: INTERSPEECH. ISCA, pp. 1478–1482.

- Saxena, Shreyas and Jakob Verbeek (2016). "Convolutional Neural Fabrics". In: CoRR abs/1606.02492. url: http://arxiv.org/abs/1606.02492.
- Warden, Pete (2018). "Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition". In: CoRR abs/1804.03209. arXiv: 1804.03209. url: http://arxiv.org/abs/1804.03209.

Zoph, Barret and Quoc V. Le (2016). "Neural Architecture Search with Reinforcement Learning". In: CoRR abs/1611.01578. url: http://arxiv.org/abs/1611.01578.