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Introduction

I The classic signal restoration problem is to determine the ideal
signal x(n) from the detected signal y(n) given by the additive
model

y(n) = p(n) ∗ x(n) + η(n) (1)

where p(n) denotes the impulse response of the data acquisition
system, the asterisk (∗) represents linear convolution, and η(n) is
a random process.

I The noise samples η(n) are generally assumed to be white and
Gaussian distributed.

I The noise is typically assumed to be independent of x(n).



Some Previous Methods to Remove Noise

I averaging filters
I adaptive median filters
I Weiner filter
I Wavelet Thresholding
I Empirical Mode Decomposition Interval Thresholding (EMT-IT)



Iterative Mean Filters

I Black is original signal with additive noise.
I Red is the result of an iterative averaging filter, the Squeeze Box

Filter (SBF)
I Pros

I Accurate when the signal is smooth.

I Cons
I Diminishes sharp edges, peaks, and valleys.



SBF with Thresholding (SBFT)

1) Set iteration indices i , j = 0 and yi ,j(n) = y(n).
2) Set iteration limits λ1, λ2 > 0, thresholds Ti ,1,Ti ,2 ≥ 0 for

i = 0, 1, 2, . . . , λ2, and convergence criteria ε > 0.
3) Each iteration j (j starts at one) begins by determining the set of

locations of local maxima (peaks) and local minima (valleys).
The locations of these extrema are defined by the set

NE = {n | yi ,j−1(n) meets condition 1 or 2 }

Condition 1: yi,j−1(n) > yi,j−1(n− 1) and yi,j−1(n) > yi,j−1(n + 1)
Condition 2: yi,j−1(n) < yi,j−1(n + l) and yi,j−1(n) < yi,j−1(n + 1)

4) Without using the local extrema values, samples within an odd
length L window centered at yi ,j−1(n) are used to determine the
local mean. These extrema maybe replaced with the local mean
values. That is for n ∈ NE the local mean is computed as:

ȳi ,j−1(n) =
1

L− 1


 b L

2c∑
l=−b L

2c
yi ,j−1(n + l)

− yi ,j−1(n)


where b·c is the greatest integer function.



5) The minimum and maximum values within the length L window
centered at yi−1(n) are determined

m = min

({
yi ,j−1(n + l)

∣∣∣∣ l = 0,±1,±2,±
⌊

L

2

⌋})
and

M = max

({
yi ,j−1(n + l)

∣∣∣∣ l = 0,±1,±2,±
⌊

L

2

⌋})
.

6) The outlier maybe replace according to

yi,j(n) =

8<:
yi,j−1(n) if |M −m| ≥ Ti,1 or

|ȳi,j−1(n)− yi,j−1(n)| ≥ Ti,2

ȳi,j−1(n) otherwise.



7a) If j < λ1 and convergence in the Cauchy sense is not attained,
that is

N−1∑
n=0

|yi ,j−1(n)− yi ,j(n)| > ε, (2)

then j is incremented by one and another iteration, starting from
Step 3, is performed.

7b) If j = λ1 or Cauchy convergence, is attained, then when i < λ2, i
is incremented by one, j = 0, and

yi ,j(n) = yi−1,λ1(n) ∗ h(n)

where h(n) is a low pass filter. The process continues starting at
Step 3.

8) The algorithm stops when i = λ2. An approximation of the noise
free signal is produced as

ŷ(n) = yλ2,λ1(n).



Experiment
I Compared SBFT with

I Ideal wavelet, wavelet denoising with hard and soft thresholding
from Wavelab 850 found at
https://statweb.stanford.edu/∼wavelab/

I EMD-IT from Y. Kopsinis and S. McLaughlin, Development of
EMD-based denoising methods inspired by wavelet thresholding,
IEEE Trans. Signal Processing , vol. 57, no. 4, pp. 18471860,
April 2009.

I Wavelab 850 test signals used
I Piece-Regular (PR) with additive Gaussian noise of σ = 5.
I Piece-Polynomial (PP) with additive Gaussian noise of σ = 5.
I Blocks (BL) with additive Gaussian noise of σ = 1.
I Doppler (DP) with additive Gaussian noise of σ = 0.1.

I SBFT parameters

PR PP BL DP

λ1 3 45 30 2

T0,1 21 70 4 0.34

T0,2 18 60 2 0.35

T1,1 12 40 2.4 0.29

T1,2 5 25 1.4 0.13



Results
Noisy PR Ideal Wavelet EMT-IT SBFT
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Noisy PP Ideal Wavelet EMT-IT SBFT
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Results
Noisy BL Ideal Wavelet EMT-IT SBFT
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Noisy DP Ideal Wavelet EMT-IT SBFT
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Signal to Noise Ratio (SNR)

I SNR {ŷ} = 20 log10

(
‖x‖
‖x−by‖

)
dB

where x is the noise free signal and ŷ is the reconstructed signal.

WaveLab Signal

Method PR PP BL DP

unprocessed 11.30 10.49 10.05 9.65

wavelet-ST 12.24 16.13 9.61 11.42

wavelet-HT 18.05 12.61 14.89 18.31

EMD-IT 18.26 16.24 16.48 18.51

SBFT 20.50 18.53 19.64 16.37

Ideal Wavelet 22.83 18.71 19.59 20.58



Conclusion

I The SBFT incorporates a thresholding operation into the iterative
averaging SBF algorithm to preserve a signal’s peaks and valleys,
while the additive noise is being reduced.

I The results show the proposed SBFT is capable of in excess of 2
dB SNR improvement over the wavelet-ST, wavelet-HT, and
EMD-IT methods on certain signals.

I In the PP restoration the SBFT nearly attained the same SNR as
the ideal wavelet method.

I In the BL example the SNR of SBFT exceeds the SNR of the
ideal wavelet method and provided over 3 dB improvement over
the others.

I When restoring the band limited DP signal, the SBFT did not
perform on par with wavelet-HT and EMD-IT where the subband
decomposition may have been advantageous.

I The evidence provided shows that the SBFT may be a more
robust denoising method than subband decomposition based
methods with certain signals.



Thank you!!!

Questions?


