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Problem formulation
Continuous-discrete filtering problem:

dX (t)=µ(X (t), t)dt+σ(X (t), t)dB(t),
Y (tn) | X (tn)∼ f (y(tn) | X (tn)).

How to approximate Bayes’ rule?
p(x(tn) | Y (tn))∝ f (y(tn) | x(tn))p(x(tn) | Y (t−n))

Results I: Wiener Velocity with Outlier
Measurements
X (t) follows a Wiener velocity model and is measured by

Y (tn)= [0,I2]X (tn)+R1/2
n Vn.

where Rn = R0 = I with probability 1−α and Rn = 20R0. As in [2]
(MM) the noise is modelled with a Laplace distribution and the pro-
jection update (PU) is compared with (MM) and a Kalman filter (KF)
using Rn = R0. RMSE for position is shown in Figure 1.
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Figure 1. α= 0.2/0.4 for figure above/below.

Results II: Stochastic Volatility
dX (t)=−λ(X (t)−m)dt+σB(t),
Y (tn)= exp(X (tn)/2)Vn, Vn ∼N (0,1).

The initial condition is Gaussian with moments E[X (0)]=V[X (0)]= 1
and σ= m = 1. We compare PU to Laplace approximation (LA) and a
Kalman filter (KF) with transformed measurements (see [3]). RMSE
is shown in Figure 2.

0.55 0.6 0.65 0.7 0.75 0.8

PU

LA

KF

RMSE

0.6 0.7 0.8 0.9

PU

LA

KF

RMSE

Figure 2. λ= 0.5/0.1 for figure above/below.

Some Information Geometry
• P be a set of probability densities on X ⊂ Rd then p1/2 belongs to a

sub-manifold of L
2 (unit sphere).

• For a parametric susbset, PΘ ⊂ P, then pθ, θ ∈Θ⊂ Rm belongs to a
sub-manifold of the unit sphere.

• If v = 1
2 p1/2

θ
u ∈ L

2, then its projection onto the tangent space at θ is
given by [1, Lemma 2.1]

Πθv = 1
2
Eθ

[
u∇T

θ log pθ

]
g−1(θ)(∇θ log pθ)p1/2

θ , (3)

where g(θ) is the Fisher information matrix.
• In general the projection of

∂τp1/2
τ = A (p1/2

τ ), p1/2
0 = p1/2

θ0
∈L

2
Θ,

onto the parametric sub-manifold is given by [1]

∂τ p̂1/2
θ(τ) =Πθ(τ)◦A (p̂1/2

θ(τ)), p̂1/2
θ(0) = p1/2

θ0
. (4)

The Projection Update (PU)
• Let πθ0 ∈PΘ be some prior and f (y | x)= exp(`(x)) be some likelihood

then the posterior is

π(x | y)= f (y | x)πθ0(x)∫
X f (y | x)πθ0(x)dx

.

• Differentiable mapping from π1/2
θ0

(x) to π1/2(x | y):

AX |Y (u)= 1
2

(`(x)−Eu2[`(X )])u, u ∈L
2, (5a)

∂τ p1/2
τ (x | y)= AX |Y (p1/2

τ (x | y)), τ ∈ [0,1]. (5b)

• The projection update is defined by

∂τ p̂1/2
θ(τ) =Πθ(τ)◦AX |Y (p̂1/2

θ(τ)), p̂1/2
θ(0) =π1/2

θ0
. (6)

– PΘ is an exponential family with sufficient statistic T(X ):

∂τθ(τ)= [g(θ(τ))]−1Ĉτ[T(X ),`(X )]. (7)

– PΘ is the Gaussian family:

∂τµ= Êτ[(X −µ)`(X )], (8a)
∂τΣ= Êτ[(X −µ)(X −µ)T(`(X )−E[`(X )])]. (8b)

• Exact updates when an exponential (including Gaussian) family PΘ

is conjugate prior to the likelihood (Theorem 1 & 2 in the paper).

Conclusions
• A curve from prior to posterior can be defined and projected onto a

manifold of densities, giving rise to projection updates.
• The method provides an effective way to for Bayesian updates with

non-Gaussian likelihoods.
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