

Aalto University

School of Electrical Engineering

Updates in Bayesian filtering by Continuous Projections on a Manifold of Densities

Filip Tronarp & Simo Särkkä Department of Electrical Engineering and Automation, Aalto University, Finland

Problem formulation

Continuous-discrete filtering problem: $dX(t) = \mu(X(t), t) dt + \sigma(X(t), t) dB(t),$ $Y(t_n) \mid X(t_n) \sim f(y(t_n) \mid X(t_n)).$

How to approximate Bayes' rule?

 $p(x(t_n) | \mathscr{Y}(t_n)) \propto f(y(t_n) | x(t_n)) p(x(t_n) | \mathscr{Y}(t_n^-))$

Results I: Wiener Velocity with Outlier Measurements

X(t) follows a Wiener velocity model and is measured by

 $Y(t_n) = [0, I_2]X(t_n) + R_n^{1/2}V_n.$

where $R_n = R_0 = I$ with probability $1 - \alpha$ and $R_n = 20R_0$. As in [2]

Some Information Geometry

- \mathscr{P} be a set of probability densities on $\mathscr{X} \subset \mathbb{R}^d$ then $p^{1/2}$ belongs to a sub-manifold of \mathscr{L}^2 (unit sphere).
- For a parametric subset, $\mathscr{P}_{\Theta} \subset \mathscr{P}$, then $p_{\theta}, \theta \in \Theta \subset \mathbb{R}^m$ belongs to a sub-manifold of the unit sphere.
- If $v = \frac{1}{2}p_{\theta}^{1/2}u \in \mathscr{L}^2$, then its projection onto the tangent space at θ is given by [1, Lemma 2.1]

$$\Pi_{\theta} v = \frac{1}{2} \mathbb{E}_{\theta} \Big[u \nabla_{\theta}^T \log p_{\theta} \Big] g^{-1}(\theta) (\nabla_{\theta} \log p_{\theta}) p_{\theta}^{1/2}, \qquad (3)$$

where $g(\theta)$ is the Fisher information matrix.

• In general the projection of

$$\partial_{\tau} p_{\tau}^{1/2} = \mathscr{A}(p_{\tau}^{1/2}), \quad p_0^{1/2} = p_{\theta_0}^{1/2} \in \mathscr{L}_{\Theta}^2,$$

onto the parametric sub-manifold is given by [1]

 $\partial_{\tau} \widehat{p}_{\theta(\tau)}^{1/2} = \prod_{\theta(\tau)} \circ \mathscr{A}(\widehat{p}_{\theta(\tau)}^{1/2}), \quad \widehat{p}_{\theta(0)}^{1/2} = p_{\theta_0}^{1/2}.$

(MM) the noise is modelled with a Laplace distribution and the projection update (PU) is compared with (MM) and a Kalman filter (KF) using $R_n = R_0$. RMSE for position is shown in Figure 1.

(4)

The Projection Update (PU)

• Let $\pi_{\theta_0} \in \mathscr{P}_{\Theta}$ be some prior and $f(y \mid x) = \exp(\ell(x))$ be some likelihood then the posterior is

$$\pi(x \mid y) = \frac{f(y \mid x)\pi_{\theta_0}(x)}{\int_{\mathscr{X}} f(y \mid x)\pi_{\theta_0}(x) \,\mathrm{d}x}.$$

• Differentiable mapping from $\pi_{\theta_0}^{1/2}(x)$ to $\pi^{1/2}(x \mid y)$:

$$\mathscr{A}_{X|Y}(u) = \frac{1}{2} (\ell(x) - \mathbb{E}_{u^2}[\ell(X)])u, \quad u \in \mathscr{L}^2,$$
(5a)

$$\partial_{\tau} p_{\tau}^{1/2}(x \mid y) = \mathcal{A}_{X|Y}(p_{\tau}^{1/2}(x \mid y)), \ \tau \in [0, 1].$$
 (5b)

• The projection update is defined by

$$\partial_{\tau} \widehat{p}_{\theta(\tau)}^{1/2} = \Pi_{\theta(\tau)} \circ \mathscr{A}_{X|Y}(\widehat{p}_{\theta(\tau)}^{1/2}), \quad \widehat{p}_{\theta(0)}^{1/2} = \pi_{\theta_0}^{1/2}.$$
(6)

– \mathcal{P}_{Θ} is an exponential family with sufficient statistic T(X):

 $\partial_{\tau}\theta(\tau) = [g(\theta(\tau))]^{-1}\widehat{\mathbb{C}}_{\tau}[T(X), \ell(X)].$ (7)

– \mathcal{P}_{Θ} is the Gaussian family:

Results II: Stochastic Volatility

 $dX(t) = -\lambda(X(t) - m)dt + \sigma B(t),$ $Y(t_n) = \exp(X(t_n)/2)V_n, V_n \sim \mathcal{N}(0, 1).$

The initial condition is Gaussian with moments $\mathbb{E}[X(0)] = \mathbb{V}[X(0)] = 1$ and $\sigma = m = 1$. We compare PU to Laplace approximation (LA) and a Kalman filter (KF) with transformed measurements (see [3]). RMSE is shown in Figure 2.

$$\partial_{\tau}\mu = \widehat{\mathbb{E}}_{\tau}[(X - \mu)\ell(X)], \qquad (8a)$$

$$\partial_{\tau}\Sigma = \widehat{\mathbb{E}}_{\tau}[(X - \mu)(X - \mu)^{\mathsf{T}}(\ell(X) - \mathbb{E}[\ell(X)])]. \qquad (8b)$$

• Exact updates when an exponential (including Gaussian) family \mathscr{P}_{Θ} is conjugate prior to the likelihood (Theorem 1 & 2 in the paper).

Conclusions

- A curve from prior to posterior can be defined and projected onto a manifold of densities, giving rise to *projection updates*.
- The method provides an effective way to for Bayesian updates with non-Gaussian likelihoods.

Department of Electrical Engineering and Automation School of Electrical Engineering Aalto University, Finland Figure 2. $\lambda = 0.5/0.1$ for figure above/below.

References

[1] D. Brigo, B. Hanzon, and F. LeGland, "Approximate nonlinear filtering by projection on exponential manifolds of densities," *Bernoulli*, vol. 5, no. 3, pp. 495–532, 1999.

[2] H. Wang, H. Li, W. Zhang, and H. Wang, "Laplace ℓ_1 robust Kalman filter based on majorization minimization," in 20th International Conference on Information Fusion.

[3] K. Platabioti, EJ McCoy, and DA Stephens, "A review of stochastic volatility: univariate and multivariate models," Tech Rep., 2005.

Contact information for comments and questions: Filip Tronarp (email: filip.tronarp@aalto.fi)