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Abstract
• We introduce Independent Vector Extraction (IVE), an

approach for joint blind extraction of an independent
vector component, the signal of interest (SOI), from K
instantaneous mixtures.

• Similarly to Independent Component/Vector Analysis
(ICA/IVA), the SOIs are assumed to be independent of the
other signals in the mixture.

• The SOIs are assumed to be non-Gaussian or noncircular
Gaussian, while the other signals are modeled as circular
Gaussian.

• Cramér-Rao-Induced Bound (CRIB) for the achievable
Interference-to-Signal Ratio (ISR) through IVE is derived
and compared with similar bounds for ICA, IVA, and
Independent Component Extraction (ICE).

Mixing Model
• Linear mixture of d independent vector components

which are formed from K scalar, possibly dependent but
uncorrelated, sources

xk = Aksk, (1)

for k = 1, . . . , K and where Ak is a random mixing matrix.

• The mixing model could be written as

xk = Akuk = aksk + yk, (2)

where sk is the SOI in the kth mixture.

• The IVE mixing model is a generalization of the ICE model
(When K = 1, ICE and IVE are the same model).

• Since yk is not the object of extraction, we can assume
xk = Ak

ICEv
k = [akQk]vk, where vk = [sk; zk] and Qk

is such that yk = Qkzk, the choice of Qk is based on the
following steps.

• Parametrization of the demixing matrix for reduction of the
ambiguity:

Wk
ICE = [wk;Bk] (3)

and denote wk = [βk;hk].

1. Bk is orthogonal to ak = [γk;gk]
- straightforward selection is Bk = [gk − γkId−1]

2. Wk
ICE is the inverse of Ak

ICE

- then sk = wkHxk

- Ak
ICE = [ak Qk] =


γk hk

H

gk 1
γk

(
gkhk

H − Id−1

)

 , where

βkγk = 1− hk
H
gk.

Signal Model
• Random variables:

- sk (non-Gaussian), the target signal
- zk (multivariate Gaussian), background signals.

• The probability density function of x is

p(x|a,w) = ps({wkHxk}Kk=1)pz({B
kxk}Kk=1)

K∏
k=1

| detWk
ICE|2

(4)
where wk,Bk and WICE

k.

• Fix γk = 1 to avoid the scaling ambiguity and to reduce the
number of parameters, then | det(WICE

k)| = 1.

• The parameter vector is given by [g;h], where g =
[g1, . . . ,gK ] and h = [h1, . . . ,hK ].

Fisher Information Matrix
• Let θk = [gk;hk] denote the parameter vector for the kth

mixture, θ = [θ1; . . . ;θK ], and θ̃ = [θ;θ∗].

• For any unbiased estimator of θ̃, it holds that

cov
(
θ̃
)
� J−1(θ̃) = CRLB(θ̃), (5)

where C � D means that C − D is positive semi-definite,
and J (θ̃) is the Fisher information matrix (FIM) defined (in a
block structure) as

J (θ̃) =

(
F P
P∗ F∗

)
= E

[
∂L
∂θ̃

(
∂L
∂θ̃

)H
]
, (6)

where L = L(θ̃) is the log-likelihood function

L = log (p(x|a,w)) . (7)

CRLB-Induced Bound for ISR
• Interference-to-Signal Ratio for the kth mixture in IVE is

defined as

ISR(ŵk) =
(ŵk)HCk

yŵ
k

σ2
sk
|(ŵk)Hak|2

=
(q̂k2)

HCk
zq̂

k
2

|q̂k1 |2σ
2
sk

≈
(q̂k2)

HCk
zq̂

k
2

σ2
sk

,

(8)
where σ2

sk
are the variances of the SOI, Ck

y = E[ykyk]H

and (q̂k)T = [q̂k1 , (q̂
k
2)
T ] = (ŵk)HAk

ICE =[
(ŵk)Hak, (ŵk)HQk

]
.

• Then, the mean ISR value reads

E[ISR(ŵk)] ≈
E
[
(q̂k2)

HCk
zq̂

k
2

]

σ2
sk

=
tr

(
Ck
zcov(q̂

k
2)
)

σ2
sk

. (9)

• Owing to the equivariance property of the BSE problem, we
can consider the special case when h = 0. Then, q̂k2 = ĥk,
and

E[ISR(ŵk)] ≈
tr

(
Ck
zcov(q̂

k
2)
)

σ2
sk

=
tr

(
Ck
zcov(ĥ

k)
)

σ2
sk

, (10)

then
E[ISR(ŵk)] ≥ σ−2

sk
tr

(
Ck
zCRLB(h

k)
)
. (11)

• After computations and by considering N observations, the
CRLB-induced bound for ISR for the kth mixture is

E[ISRIVE(ŵ
k)] ≥ 1

N

d− 1

κkIVE − 1
, (12)

where κkIVE = E

[∣∣∣∂ log(p(s))∂sk

∣∣∣2
]

where p(s) is the joint pdf of

s = s1, . . . , sK scaled to the unit variance.

Bounds for IVE, ICE, ICA, IVA
• Known bounds:

1. ICA (see [6, 5] for details):

E[(ISRICA)i,j] ≥
1

N

κj
κiκj − 1

, (13)

where κi = E

[∣∣∣∂ log(pi(yi))∂yi

∣∣∣2
]

where pi(yi) is the pdf of the

ith independent component scaled to the unit variance.

2. IVA (derived in [1]):

E[(ISRkIVA)i,j] ≥
1

N

κkj

κki κ
k
j − 1

, (14)

where κki = E

[∣∣∣∂ log(p(yi))
∂yki

∣∣∣2
]

where p(yi) is the joint pdf

of the ith vector component yi = [y1i , . . . , y
K
i ] scaled to the

unit variance.

3. ICE (derived in [2]):

E[ISRICE(ŵ)] ≥ 1

N

d− 1

κICE − 1
, (15)

where κICE = E

[∣∣∣∂ log(p(s))∂s

∣∣∣2
]

and p(s) is the pdf of the

SOI s scaled to the unit variance.

• The following proposition shows that the dependence
between signals from different mixtures can improve
accuracy.

Proposition 1. Let p(s1, . . . , sK) denote the joint pdf of
s1, . . . , sK , and pk(s

k) be the marginal pdf of sk, k =
1, . . . , K. Then, κkIVE ≥ κkICE, and the equality when sk is
independent of the other random variables, or, equivalently,
when p(s1, . . . , sK) = pk(s

k)p(s1, . . . , s
k−1, sk+1, . . . , sK).

• Comparison of CRIBs for E[ISR(ŵk)]:

ICA ICE IVA IVE
ICA = ≤ ≥ n/a
ICE ≥ = n/a ≥
IVA ≤ n/a = ≤
IVE n/a ≤ ≥ =

• The bound for ICA is lower than the bound for ICE (and IVA
than IVE), since in ICA (and IVA) the background is not
modeled as Gaussian.

Simulations

• Compare the bounds for ICE and IVE with empirical mean
ISR achieved by the OGICE (Orthogonally Constrained ICE,
see [4]) and by OGIVE, see [3], performing IVE.

• Both algorithms are properly initialized and the true score
functions are used as the internal nonlinear function.

• For simplicity, only real-valued signals and mixing matrix are
assumed.

• In one trial, K = 3 mixtures of d = 5 independent signals are
generated: the background signals in mixtures are Gaussian
with zero mean and unit variance, the SOIs (one SOI per
mixture) are mutually dependent, drawn according to the
joint pdf given by

p(s1, . . . , sK) ∝ exp


−


λ

K∑
i=1

|si|2



α
 , (16)

where λ > 0, and α �= 1 (for α = 1, the pdf is Gaussian).

• All signals are mixed by a random mixing matrix.

• The following graph shows the comparison between IVE and
ICE.
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Fig. 1. CRIBs and average ISRs in 500 trials achieved by the compared
algorithms for d = 5, N = 5000, K = 3.

Conclusions

• The CRIB on ISR achieved by IVE has shown that the
structured (de-)mixing matrix model with a reduced number
of parameters is not restrictive in terms of the achievable
accuracy.

• The accuracy achievable by IVE is, in comparison to IVA, the
same when the background is Gaussian.

• The dependence between the SOIs in the mixtures enable
IVE to reach a better accuracy than ICE, which treats each
mixture separately.
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