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e For any unbiased estimator of 0, it holds that

e We introduce Independent Vector Extraction (IVE), an
approach for joint blind extraction of an independent
vector component, the signal of interest (SOI), from K
Instantaneous mixtures.

cov (é) ~ 77Y() = CRLB(), (5)

where Q >~ D means that C — D is positive semi-definite,
and J (@) is the Fisher information matrix (FIM) defined (in a

block structure) as
e Similarly to Independent Component/Vector Analysis
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where £ = L(#) is the log-likelihood function

L = log (p(x|a, w)). (7)

CRLB-Induced Bound for ISR

e The SOIs are assumed to be non-Gaussian or noncircular
Gaussian, while the other signals are modeled as circular
Gaussian.

e Cramér-Rao-Induced Bound (CRIB) for the achievable
Interference-to-Signal Ratio (ISR) through IVE is derived
and compared with similar bounds for ICA, IVA, and
Independent Component Extraction (ICE).

e Interference-to-Signal Ratio for the £th mixture in IVE is

defined as
. . ~Hkak A . . .
Mixing model renieh) - LG (@)"Ca5  (@)"Chd
Uzk‘(wk>Hak‘2 ‘quf‘Qagk: Uzk
e Linear mixture of d independent vector components (8)

which are formed from K scalar, possibly dependent but where o, are the variances of the SOI, Cf, — E[ykyk]H
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fork=1,..., K and where A% is a random mixing matrix. e Then, the mean ISR value reads
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e The mixing model could be written as L B {(q2> CZqQ} tr (CzCOV(QQ>)
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where s” is the SOI in the kth mixture. e Owing to the equivariance property of the BSE problem, we

can consider the special case when h = 0. Then, ag N ,

e The IVE mixing model 1s a generalization of the ICE model and
(When K = 1, ICE and IVE are the same model). R
tr (C]Z“cov(ag)) tr (Clécov(hk))

e Since yk is not the object of extraction, we can assume E[ISR(vAvk)] ~ ; — ; . (10)
xF = A]fCEVk — [a*QFv¥, where v = [s";2"] and Q" O gk O gk
is such that yk — QFz", the choice of QF is based on the hef
following steps. E[ISR(WF)] > 07 tr (c’;CRLB(h’f)) . (11)

e Parametrization of the demixing matrix for reduction of the

ambiguity: e After computations and by considering /N observations, the

3) CRLB-induced bound for ISR for the kth mixture is
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Wieg, = [w"; BY]
and denote w” = [5¥; h"].

, (12)
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2. Wicg 1s the 1n\}je[rse of Acg s = st ..., s scaled to the unit variance.
- then sF = wh" x*

Bounds for IVE, ICE, ICA, IVA

Al =" Q] -

H
Brak — 1 — ph gk,

Signal model

e Random variables:
_ gk (non-Gaussian), the target signal
- zF (multivariate Gaussian), background signals.

e Known bounds:

1. ICA (see [6, 5] for details):

N
E[(ISR1ca); ;] > /
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(13)
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where k; = E [| 810%@ ?<y”))| ] where p;(y;) is the pdf of the

1th independent component scaled to the unit variance.

e The probability density function of x 1s
2. IVA (derived 1n [1]):

K
B N ko K ko2 1 Kk
p(xla, w) = ps({w" X"} )pa({B"x" 1)) | | | det Wcg| Bl(ISRYyp)i ] > w2 (14)
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where wk, B* and WICEk .

Y2
where /@'f = K [|810g8<5 ,Syz))| ] where p(y;) is the joint pdf

of the ith vector component y; = [yzl, .
unit variance.

e Fix vk = 1 to avoid the scaling ambiguity and to reduce the

K
number of parameters, then | det(WICEk)\ = 1. y Yy | scaled to the

e The parameter vector is given by [g; h|, where g = o
[gl7 o 7gK] and b — [hl, . ,hK]. 3. ICE (derived in [2]):

~ 1 d—1
E[ISR1ce(W)| >

15
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Fisher Information Matrix

|(9 log(p(s))
Js

2
] and p(s) is the pdf of the

SOI s scaled to the unit variance.

o Let 0% = [gF:h¥] denote the parameter vector for the £th where kjcp = B

mixture, @ = [0';...:0%], and 6 = [; 6*].
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e The following proposition shows that the dependence
between signals from different mixtures can improve
accuracy.

Proposition 1. Lez p(s', . . ., st ) denote the joint pdf of
st,...,s™, and p;(s") be the marginal pdf of s, k =

1,..., K. Then, /i{“VE > IQ{CCE, and the equality when sk is

independent of the other random variables, or, equivalently,

when p(s', ..., SK) = pk(sk)p(sl, gkl gkt SK).

e Comparison of CRIBs for E[ISR(W")]:

ICA |ICE IVA |IVE

ICA| = | < | > | n/a
ICE| > = |n/al >
IVAl < |nfa = | <

IVE n/a| < | >

e The bound for ICA 1is lower than the bound for ICE (and IVA
than IVE), since in ICA (and IVA) the background 1s not
modeled as Gaussian.

e Compare the bounds for ICE and IVE with empirical mean
ISR achieved by the OGICE (Orthogonally Constrained ICE,
see [4]) and by OGIVE, see [3], performing IVE.

e Both algorithms are properly initialized and the true score
functions are used as the internal nonlinear function.

e For simplicity, only real-valued signals and mixing matrix are
assumed.

e In one trial, X' = 3 mixtures of d = 5 independent signals are
generated: the background signals in mixtures are Gaussian
with zero mean and unit variance, the SOIs (one SOI per
mixture) are mutually dependent, drawn according to the
joint pdf given by

0%

K
p(sl,...,sK)ocexp = )\Z|3i\2 : (16)
1=1

where A > 0, and o # 1 (for o = 1, the pdf is Gaussian).
e All signals are mixed by a random mixing matrix.

e The following graph shows the comparison between IVE and
ICE.
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Fig. 1. CRIBs and average ISRs in 500 trials achieved by the compared
algorithms for d = 5, N = 5000, K = 3.

e The CRIB on ISR achieved by IVE has shown that the
structured (de-)mixing matrix model with a reduced number
of parameters is not restrictive in terms of the achievable
accuracy.

e The accuracy achievable by IVE is, in comparison to IVA, the
same when the background 1s Gaussian.

e The dependence between the SOIs in the mixtures enable
IVE to reach a better accuracy than ICE, which treats each

mixture separately.
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