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Background: LM integration in S2S model

Introduction

• Task: Language model (LM) integration to help sequence-to-
sequence (S2S) ASR training 

• Proposal:
Ø Update of the hidden/cell states in S2S LSTM decoder using LM information
Ø Use of the LM information for both character inference and states update in decoder
Ø 3 variants with the idea

• System:
Ø S2S attention model with CTC-loss as a regularizer
Ø LM trained ahead before the S2S model training

• LM integration in decoding: 
Ø Shallow fusion (SF): Linear interpolation between two scores with a hyper parameter

Ø Deep fusion (DF): Parameter learning to connect LM and S2S model

• LM Integration in training:
Ø Cold fusion (CF): Training of S2S model in the help of trained LM, ideally with extra 

unpaired text in the domain

Proposed method: Memory control fusion (MF)

• Belongs to the second category, LM integration in training
• Controls the hidden/cell (memory) states in S2S decoder using LM 

information
• Affects both inference and the states update in the decoder over time

• 3 variants: 
1) Cell update (MF1), 2) CF+ MF1 (MF2) , 3) Cell & State Update (MF3)

• Mono-lingual ASR
Ø Paired data (Speech and its transcript): Librispeech 100/960 hrs
Ø External text (not paired with speech): 10 times of whole paired text
Ø S2S: 8-layer BLSTM encoder + 1-layer LSTM decoder, LM: 2-layer LSTM

• Transfer learning from a language-independent model to a target model
Ø Language-independent model: Trained with 10 Babel languages (~643 hrs) not 

including the target language
Ø Target model: Trained on a target language data, Swahili (~50 hrs) with initialized 

parameters from the language-independent model

• Mono-lingual setup

• Transfer learning setup

• Consistent improvements compared to the previous methods
• Third variant updating both hidden/cell states worked the best
• ~2 to 4% relative improvement in WER in mono-lingual setup
• ~9 to 10% relative improvement in WER in multi-lingual transfer learning 

setup
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