Accelerating Iterative Hard Thresholding For Low-rank Matrix Completion Via Adaptive Restart

Trung Vu and Raviv Raich

School of EECS, Oregon State University, Corvallis, OR 97331-5501, USA

 $\{vutru, raich\}$ @oregonstate.edu

May 16, 2019

1 Problem Formulation

2 Background

3 Main Results

Trung Vu and Raviv Raich (OSU)

The Netflix Prize Problem

Movies

Known: $S = \{(i,j) \mid M_{ij} \text{ is observed}\}$ Unknown: $S^c = \{(i,j) \mid M_{ij} = ?\}$

イロト イヨト イヨト

A partially known rating matrix $M \in \mathbb{R}^{m \times n}$ with rank $(M) \leq r$

Trung Vu and Raviv Raich (OSU)

▶ ▲ 클 ▶ 클 ∽ ९ ୯ May 16, 2019 3 / 22

Users

Low-Rank Matrix Completion Problem

$$\begin{array}{ll} \text{find} & X_{ij}, & (i,j) \in \mathcal{S}^c\\ \text{subject to} & \operatorname{rank}(X) \leq r \text{ and } X_{ij} = M_{ij} \text{ for } (i,j) \in \mathcal{S}.\\ & (r < n \leq m) \end{array}$$

Notations

• Sampling operator X_S

$$[X_{\mathcal{S}}]_{ij} = \begin{cases} X_{ij} & \text{if } (i,j) \in \mathcal{S} \\ 0 & \text{if } (i,j) \in \mathcal{S}^c \end{cases} \qquad \qquad \begin{array}{c} 4 & 2 & 4 \\ 4 & 2 & 4 \\ 4 & 2 & 4 \\ 4 & 2 & 4 \\ 4 & 2 & 4 \\ 4 & 2 & 4 \\ 4 & 2 & 4 \\ 4 & 2 & 4 \\ \end{array} \xrightarrow{\begin{array}{c} 4 & 0 & 0 \\ 0 & 0 & 4 \\ 0 & 2 & 0 \\ 4 & 0 & 4 \\ \end{array}}$$

• Row selection matrix $S_{(\mathcal{S})} \in \mathbb{R}^{s \times mn}$ corresponding to \mathcal{S}

 The rank-r projection of an arbitrary matrix X ∈ ℝ^{m×n} is obtained by hard-thresholding singular values of X

$$\mathcal{P}_{r}(X) = \sum_{i=1}^{r} \sigma_{i}(X) u_{i}(X) v_{i}(X)^{T}$$

• The **SVD** of the matrix *M* can be *partitioned* based on the signal subspace and its orthogonal subspace

$$M = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix} \qquad \qquad \Sigma_1 \in \mathbb{R}^{r \times r}$$

$$\text{find } X_{ij}, \quad (i,j) \in \mathcal{S}^{\mathsf{c}} \quad \text{s.t.} \quad \ \text{rank}(X) \leq r \text{ and } X_{\mathcal{S}} = M_{\mathcal{S}}$$

Approach	Problem formulation		Property	
Convex relaxation	min $\ X\ _*$	s.t. $X_S = M_S$		
	min $\lambda \ X\ _* + \frac{1}{2} \ X_S - M_S\ _F^2$		 Kigorous guarantees K Class consumption 	
	min $\tau \ X\ _* + \frac{1}{2} \ X\ _F^2$	s.t. $X_S = M_S$	∧ Slow convergence	
Non-convex	min $rank(X)$	s.t. $X_S = M_S$	 ✓ Fast convergence ✗ Hard to analyze 	
	min $\ X_{\mathcal{S}} - M_{\mathcal{S}}\ _F^2$	s.t. $\operatorname{rank}(X) \leq r$ (*)		
	min $\left\ [XY^T]_S - M_S \right\ _F^2$	$X \in \mathbb{R}^{m \times r}, Y \in \mathbb{R}^{n \times r}$		

 $\|X\|_* = \sum_{i=1}^n \sigma_i(X)$

Problem Formulation

Trung Vu and Raviv Raich (OSU)

Iterative Hard Thresholding for Matrix Completion

$$\min_{X \in \mathbb{R}^{m \times n}} \frac{1}{2} \left\| X_{\mathcal{S}} - M_{\mathcal{S}} \right\|_{F}^{2} \qquad \text{s.t. } \operatorname{rank}(X) \leq r \qquad (*)$$

 Iterative hard thresholding (IHT) is a variant of non-convex projected gradient descent

$$X^{(k+1)} = \mathcal{P}_r \left(X^{(k)} - \alpha_k [X^{(k)} - M]_{\mathcal{S}} \right)$$

• Unlike matrix sensing, the matrix RIP does not hold for MCP

$$0 \cdot \|X\|_F^2 \le \|[X]_{\mathcal{S}}\|_F^2 \le 1 \cdot \|X\|_F^2$$

Global convergence is non-trivial! [Jain, Meka, and Dhillon 2010]

Algorithm 1 IHTSVD

1: for
$$k = 0, 1, 2, ...$$
 do
2: $X^{(k+1)} = \mathcal{P}_r(Y^{(k)})$
3: $Y^{(k+1)} = \mathcal{P}_{M,S}(X^{(k+1)})$

$$^*\mathcal{P}_{M,\mathcal{S}}(X) = X_{\mathcal{S}^c} + M_{\mathcal{S}}$$

▶ IHT with unit step size $\alpha_k = 1$

Source: [Chunikhina, Raich, and Nguyen 2014]

[ibid.] If $\sigma = \sigma_{\min}(S_{(S^c)}(V_2 \otimes U_2)) > 0$, then IHTSVD converges to *M locally* at a linear rate $1 - \sigma^2$.

Linearization of the Rank-r Projection

$$\mathcal{P}_r(M + \Delta) = M + \Delta - U_2 U_2^T \Delta V_2 V_2^T + O(\|\Delta\|_F^2)$$

• Local convergence analysis assumes $Y^{(k)}$ is a perturbed matrix of M

$$M + E^{(k+1)} = Y^{(k+1)} = \mathcal{P}_{M,S}(\mathcal{P}_r(Y^{(k)})) = \mathcal{P}_{M,S}(\mathcal{P}_r(M + E^{(k)}))$$

• The recursion on the error matrix $E^{(k+1)} = \left[\mathcal{P}_r(M + E^{(k)}) - M\right]_{\mathcal{S}^c}$ can be approximated by

$$\underbrace{\mathsf{S}_{(\mathcal{S}^c)} \operatorname{vec}(E^{(k+1)})}_{e^{(k+1)}} \stackrel{1}{=} \underbrace{\left(\underbrace{I_s - \mathsf{S}_{(\mathcal{S}^c)}(V_2 \otimes U_2)(V_2 \otimes U_2)^T \mathsf{S}_{(\mathcal{S}^c)}^T\right)}_{A} \underbrace{\mathsf{S}_{(\mathcal{S}^c)} \operatorname{vec}(E^{(k)})}_{e^{(k)}}}_{e^{(k)}}$$
• Stable if $\lambda_{\max}(A) = 1 - \left(\sigma_{\min}(\mathsf{S}_{(\mathcal{S}^c)}(V_2 \otimes U_2))\right)^2 < 1$

Figure 1: The distance to the solution (in log-scale) as a function of the iteration number for various algorithms. m = 50, n = 40, r = 3, and s = 1000. All algorithms share the same computational complexity per iteration (O(mnr)) except SVT $(O(mn^2))$ [Cai, Candès, and Shen 2010] and AM $(O(sm^2r^2 + m^3r^3))$ [Jain, Netrapalli, and Sanghavi 2013].

Problem Formulation

Trung Vu and Raviv Raich (OSU)

- Analyze the local convergence of accelerated IHTSVD for solving the rank constrained least squares problem (*).
- Propose a practical way to select momentum step size that enables us to recovers the optimal rate of convergence near the solution.

Nesterov's Accelerated Gradient

• Nesterov's Accelerated Gradient (NAG) is a simple modification to gradient descent that **provably** accelerates the convergence

$$\begin{aligned} x^{(k+1)} &= y^{(k)} - \alpha_k \nabla f(y^{(k)}) \\ y^{(k+1)} &= x^{(k+1)} + \beta_k (x^{(k+1)} - x^{(k)}) \end{aligned}$$

• If f is μ -strongly convex, L-smooth function, NAG can improve the **linear convergence rate** from $1 - \mu/L$ to $1 - \sqrt{\mu/L}$ by setting

$$\alpha_k = \frac{1}{L}, \qquad \beta_k = \frac{1 - \sqrt{\mu/L}}{1 + \sqrt{\mu/L}}.$$
 [Nesterov 2004]

• Iteration complexity: $O(\sqrt{\kappa})$, compared to $O(\kappa)$ for gradient descent, where $\kappa = \frac{L}{\mu}$ is the condition number.

Algorithm 2 NAG-IHT

1: for
$$k = 0, 1, 2, ...$$
 do
2: $X^{(k+1)} = \mathcal{P}_r(Y^{(k)})$
3: $Y^{(k+1)} = \mathcal{P}_{M,S}(X^{(k+1)} + \beta_k(X^{(k+1)} - X^{(k)}))$

Method	# Ops./Iter.	Local conv. rate	#Iters. needed ϵ -acc.
IHTSVD	O(mnr)	$1 - \sigma^2$	$rac{1}{\sigma^2}\log(1/\epsilon)$
NAG-IHT with $\beta_k = \frac{1-\sigma}{1+\sigma}$	O(mnr)	$1 - \sigma$	$rac{1}{\sigma}\log(1/\epsilon)$

*
$$\sigma = \sigma_{\min} (\mathsf{S}_{(\mathcal{S}^c)}(V_2 \otimes U_2))$$

イロト イ団ト イヨト イヨト

A Practical Method for Step Size Selection

- Practical issue: fast convergence requires **prior knowledge of global parameters** related to the objective function $(\beta_k = \frac{1-\sigma}{1+\sigma})$.
- Solution: adaptive restart [O'Donoghue and Candès 2015]

- Use an incremental momentum $\beta_k = \frac{t-1}{t+2}$ starting at t = 1
- When $f(x^{(k+1)}) > f(x^{(k)})$, reset t = 1

Algorithm 3 ARNAG-IHT

1:
$$t = 1$$

2: $f_0 = \left\| X_{S}^{(0)} - M_{S} \right\|_{F}^{2}$
3: for $k = 0, 1, 2, ...$ do
4: $X^{(k+1)} = \mathcal{P}_{r}(Y^{(k)})$
5: $Y^{(k+1)} = \mathcal{P}_{M,S}(X^{(k+1)} + \frac{t-1}{t+2}(X^{(k+1)} - X^{(k)}))$
6: $f_{k+1} = \left\| X_{S}^{(k+1)} - M_{S} \right\|_{F}^{2}$
7: if $f_{k+1} > f_{k}$ then $t = 1$ else $t = t + 1$ \triangleright function scheme

Numerical Evaluation

Figure 2: The distance to the solution (in log-scale) as a function of the iteration number for IHT algorithms (solid) and their corresponding theoretical bounds up to a constant (dashed). m = 50, n = 40, r = 3, and s = 1000. *NAG-IHT using optimal step size is not applicable in practice.

Problem Formulation

2 Background

3 Main Results

Conclusions

- The local convergence of IHT for low-rank matrix completion can be characterized through the linearization of the rank projection.
- Convex optimization concepts such as strong convexity can be exploited to analyze convergence property and accommodate acceleration.
- Adaptive restart is an efficient way to accommodate Nesterov's Accelerated Gradient in plain IHT in practice.

Future work

- Extending the local convergence analysis to the real-world cases when the underlying matrix is noisy and/or not close to being low rank.
- Convergence under a simple initialization suggests potential analysis of global convergence of our algorithm.

- Cai, J.-F., E. Candès, and Z. Shen (2010). "A Singular Value Thresholding Algorithm for Matrix Completion". In: SIAM Journal on Optimization 20.4, pp. 1956–1982.
- Chunikhina, E., R. Raich, and T. Nguyen (2014). "Performance analysis for matrix completion via iterative hard-thresholded SVD". In: 2014 IEEE Workshop on Statistical Signal Processing (SSP), pp. 392–395.
- Jain, P., R. Meka, and I. Dhillon (2010). "Guaranteed Rank Minimization via Singular Value Projection". In: Advances in Neural Information Processing Systems (NIPS), pp. 937–945.
- Jain, P., P. Netrapalli, and S. Sanghavi (2013). "Low-rank Matrix Completion Using Alternating Minimization". In: Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing, pp. 665–674.
- Nesterov, Y. (2004). Introductory lectures on convex optimization: a basic course. Kluwer Academic Publishers.
- O'Donoghue, B. and E. Candès (2015). "Adaptive Restart for Accelerated Gradient Schemes". In: Foundations of Computational Mathematics 15.3, pp. 715–732.

(日) (同) (三) (三)