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The Netflix Prize Problem
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A partially known rating matrix M ∈ Rm×n with rank(M) ≤ r
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Low-Rank Matrix Completion Problem
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find Xij , (i , j) ∈ Sc

subject to rank(X ) ≤ r and Xij = Mij for (i , j) ∈ S.

(r < n ≤ m)
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Notations

Sampling operator XS

[XS ]ij =

{
Xij if (i , j) ∈ S
0 if (i , j) ∈ Sc

4 2 4

4 2 4

4 2 4

4 2 4

 S−→
4 0 0

0 0 4

0 2 0

4 0 4


Row selection matrix S(S) ∈ Rs×mn corresponding to S

︸ ︷︷ ︸
S(S)



1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1


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The rank-r projection of an arbitrary matrix X ∈ Rm×n is obtained
by hard-thresholding singular values of X

Pr (X ) =
r∑

i=1

σi (X )ui (X )vi (X )T

The SVD of the matrix M can be partitioned based on the signal
subspace and its orthogonal subspace

M =
[
U1 U2

]Σ1 0

0 0

V T
1

V T
2

 Σ1 ∈ Rr×r
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Several Formulations of Low-Rank Matrix Completion

find Xij , (i , j) ∈ Sc s.t. rank(X ) ≤ r and XS = MS

Approach Problem formulation Property

Convex

relaxation

min ‖X‖∗ s.t. XS = MS
3 Rigorous guarantees

7 Slow convergence
min λ ‖X‖∗ + 1

2 ‖XS −MS‖2
F

min τ ‖X‖∗ + 1
2 ‖X‖

2
F s.t. XS = MS

Non-convex

min rank(X ) s.t. XS = MS
3 Fast convergence

7 Hard to analyze
min ‖XS −MS‖2

F s.t. rank(X ) ≤ r (∗)

min
∥∥[XY T ]S −MS

∥∥2

F
X ∈ Rm×r ,Y ∈ Rn×r

‖X‖∗ =
∑n

i=1 σi (X )
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Iterative Hard Thresholding for Matrix Completion

min
X∈Rm×n

1

2
‖XS −MS‖2

F s.t. rank(X ) ≤ r (∗)

Iterative hard thresholding (IHT) is a variant of non-convex
projected gradient descent

X (k+1) = Pr
(
X (k) − αk [X (k) −M]S

)
Unlike matrix sensing, the matrix RIP does not hold for MCP

0 · ‖X‖2
F ≤ ‖[X ]S‖2

F ≤ 1 · ‖X‖2
F

I Global convergence is non-trivial! [Jain, Meka, and Dhillon 2010]
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Local Convergence of IHT

Algorithm 1 IHTSVD

1: for k = 0, 1, 2, . . . do
2: X (k+1) = Pr

(
Y (k)

)
3: Y (k+1) = PM,S

(
X (k+1)

)
*PM,S(X ) = XSc + MS

I IHT with unit step size αk = 1


4 0 0

0 0 4

0 2 0

4 0 4


Pr−→


2 0 2

2 0 2

0 0 0

4 0 4


PM,S−−−→


4 0 2

2 0 4

0 2 0

4 0 4


Pr−→ . . .

Source: [Chunikhina, Raich, and Nguyen 2014]

[ibid.] If σ = σmin

(
S(Sc )(V2 ⊗ U2)

)
> 0, then IHTSVD converges to M

locally at a linear rate 1− σ2.
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Linearization of the Rank-r Projection

Pr (M + ∆) = M + ∆− U2U
T
2 ∆V2V

T
2 + O(‖∆‖2

F )

Local convergence analysis assumes Y (k) is a perturbed matrix of M

M + E (k+1) = Y (k+1) = PM,S
(
Pr (Y (k))

)
= PM,S

(
Pr (M + E (k))

)
The recursion on the error matrix E (k+1) =

[
Pr (M + E (k))−M

]
Sc

can be approximated by

︸ ︷︷ ︸
e(k+1)

S(Sc ) vec(E (k+1))
1

==
(
︸ ︷︷ ︸

A

Is − S(Sc )(V2 ⊗ U2)(V2 ⊗ U2)TST
(Sc )

)
︸ ︷︷ ︸

e(k)

S(Sc ) vec(E (k))

Stable if λmax(A) = 1−
(
σmin

(
S(Sc )(V2 ⊗ U2)

))2

< 1
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Figure 1: The distance to the solution (in log-scale) as a function of the iteration number for
various algorithms. m = 50, n = 40, r = 3, and s = 1000. All algorithms share the same
computational complexity per iteration

(
O(mnr)

)
except SVT

(
O(mn2)

)
[Cai, Candès, and

Shen 2010] and AM
(
O(sm2r2 + m3r3)

)
[Jain, Netrapalli, and Sanghavi 2013].
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Our Contribution

1 Analyze the local convergence of accelerated IHTSVD for solving the
rank constrained least squares problem (*).

2 Propose a practical way to select momentum step size that enables us
to recovers the optimal rate of convergence near the solution.
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Nesterov’s Accelerated Gradient

Nesterov’s Accelerated Gradient (NAG) is a simple modification to
gradient descent that provably accelerates the convergence

x (k+1) = y (k) − αk∇f (y (k))

y (k+1) = x (k+1) + βk(x (k+1) − x (k))

If f is µ-strongly convex, L-smooth function, NAG can improve the
linear convergence rate from 1− µ/L to 1−

√
µ/L by setting

αk =
1

L
, βk =

1−
√
µ/L

1 +
√
µ/L

. [Nesterov 2004]

Iteration complexity: O(
√
κ), compared to O(κ) for gradient descent,

where κ = L
µ is the condition number.
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The Proposed NAG-IHT

Algorithm 2 NAG-IHT

1: for k = 0, 1, 2, . . . do
2: X (k+1) = Pr

(
Y (k)

)
3: Y (k+1) = PM,S

(
X (k+1) + βk(X (k+1) − X (k))

)

Method # Ops./Iter. Local conv. rate #Iters. needed ε-acc.

IHTSVD O(mnr) 1− σ2 1
σ2 log(1/ε)

NAG-IHT with βk = 1−σ
1+σ O(mnr) 1− σ 1

σ log(1/ε)

∗ σ = σmin

(
S(Sc )(V2 ⊗ U2)

)
Trung Vu and Raviv Raich (OSU) ICASSP 2019 May 16, 2019 16 / 22



A Practical Method for Step Size Selection

Practical issue: fast convergence requires prior knowledge of global
parameters related to the objective function (βk = 1−σ

1+σ ).

Solution: adaptive restart [O’Donoghue and Candès 2015]

Use an incremental momentum
βk = t−1

t+2 starting at t = 1

When f (x (k+1)) > f (x (k)), reset t = 1
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Restart every 1000
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Function scheme

Gradient scheme
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The Proposed Adaptive Restart Scheme for NAG-IHT

Algorithm 3 ARNAG-IHT

1: t = 1

2: f0 =
∥∥∥X (0)
S −MS

∥∥∥2

F
3: for k = 0, 1, 2, . . . do
4: X (k+1) = Pr

(
Y (k)

)
5: Y (k+1) = PM,S

(
X (k+1) + t−1

t+2 (X (k+1) − X (k))
)

6: fk+1 =
∥∥∥X (k+1)
S −MS

∥∥∥2

F
7: if fk+1 > fk then t = 1 else t = t + 1 . function scheme
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Numerical Evaluation
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Figure 2: The distance to the solution (in log-scale) as a function of the iteration number for
IHT algorithms (solid) and their corresponding theoretical bounds up to a constant (dashed).
m = 50, n = 40, r = 3, and s = 1000. *NAG-IHT using optimal step size is not applicable in
practice.
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Conclusions and Future Work

Conclusions

The local convergence of IHT for low-rank matrix completion can be
characterized through the linearization of the rank projection.
Convex optimization concepts such as strong convexity can be exploited
to analyze convergence property and accommodate acceleration.
Adaptive restart is an efficient way to accommodate Nesterov’s
Accelerated Gradient in plain IHT in practice.

Future work

Extending the local convergence analysis to the real-world cases when
the underlying matrix is noisy and/or not close to being low rank.
Convergence under a simple initialization suggests potential analysis of
global convergence of our algorithm.
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