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ABSTRACT

In this paper, a Bayesian-optimized bidirectional Long Short -Term Memory (LSTM) method
for energy disaggregation, is introduced. Energy disaggregation or the so called Non-Intrusive
Load Monitoring (NILM), is a process aiming to identify the individual contribution of ap-
pliances in the aggregate electricity load. The proposed model, called Bayes-BiLSTM is
organized in a modular way to address multi-dimensionality issues that arise when the number
of appliances increase. In addition, a non-causal model is introduced in order to tackle with
inherent structure, characterizing the operation of multi-state appliances. Furthermore, a
Bayesian-optimized framework is introduced to select the best configuration of the proposed
regression model, thus increasing performance. Experimental results indicate the proposed
method’s superiority, compared to the current state-of-the-art.

Contribution

The proposed appliance-based, Bayesian-optimized BiLSTM regression model satisfies a set of
crucial characteristics making it superior than the other NILM (Non-Intrusive Load Monitoring)
methods. These specific features are summarized below:

•Long Term Regression: This work addresses NILM as a sequence-to-sequence regres-
sion problem, thus allowing to maintain all the necessary information. Additionally, existing
long term dependencies should be accounted for, increasing regression performance.

•Modularity: Our approach is conducted for each device separately with an appliance-based,
modular and extensible model, thus addressing dimentionality issues.

•Optimization: Bayesian optimization strengthens model’s performance through the opti-
mal hyperparameters selection, creating a unique optimal model, adaptable to each appliance’s
individual settings and seasonal variations.

•Non-causality: In our approach, non-causality is achieved by modifying the conventional
LSTM (Long Short-Term Memory) network taking into account both previous and future states
of electricity power load. Therefore, bidirectional, recurrent regression deep models are adopted
for NILM.
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Fig.1 Bidirectional long range recurrent regression model and the respective memory cell.The memory cell of a LSTM
network. It contains three different components; (i) the forget gate F (n), (ii) the input gate I (n) and the input node
H(n) and (iii) the output gate O(n).

Methodology

Let M be a set of all known household’s appliances. Let p(n) be the aggregate measured energy
signal at time t. Let us denote by pj(n) the active power load of j-th appliance out of M
available.We can express p(n) as [1]:

p(n) =
M∑
j=1

pj(n) + e(n)

where e(n) is the noise of the measurements. So, the values pj(n) expressed as:

pj(n) = f (p(n)) + e(n) = p̂j(n) + e(n)

where p(n) = [(p(n) · · · p(n − K ))]T is the aggregate signal p(n) over a time window K+1 and
f (·) is a non-linear function. One way to approximate the unknown relationship f (·) is through
a feed-forward neural network:

p̂j(n) = [uj(n)]T · vj

uj(n) =

uj ,1(n)
...

uj ,L(n)

 =

tanh (wj ,1(n) · p(n))
...

tanh (wj ,L(n) · p(n))


where w(j , i) =, i = 1, , L, are weights connecting the input and the i -th hidden neuron and
vector u(n) is a state vector gathering all hidden layer responses u(j , i) at n time period. These
non-linear transformations are linearly combined to provide the estimate of p̂j(n), using a set of
weights vj .

TABLE I. Performance evaluation has been performed among Bayes-BiLSTM and other approaches, such as CNNs,
unidirectional LSTMs, CO and FHMM. The table presents the comparative results based on objective metrics of
MAE, RMSE and NRMS. In this experimental setup, we have selected four appliances of dataset, which are CDE,
DWE, HPE, WOE.

MAE RMSE NRMS MAE RMSE NRMS

Methods Appliance 1: CDE Appliance 2: DWE
Bayes-BiLSTM 9.19 62.19 0.15 6.43 51.14 0.27
LSTM 25.35 180.91 0.43 24.04 72.05 1.00
CNN 34.42 202.52 0.48 32.67 84.59 1.24
CO 117.53 323.23 1.26 156.23 317.62 4.41

FHMM 129.57 453.31 0.90 313.68 459.07 4.44

Methods Appliance 3: HPE Appliance 4: WOE
Bayes-BiLSTM 106.56 395.29 0.59 8.06 118.63 0.75

LSTM 161.74 369.81 0.55 15.82 141.2 0.89

CNN 158.68 305.47 0.46 23.30 138.7 0.88

CO 249.16 426.66 1.23 267.00 360.85 3.46

FHMM 121.69 458.77 1.14 49.38 432.79 2.89
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Since the appliances randomly become dynamically active/inactive, the state vector u(n) depends
on its previous values. So,

ui(n) = g(wT
i · p(n) + rTi · u(n − 1))

where ri is a set of parameters that weigh the contribution of u(n − 1) to the current state
values. This equation models the Recurrent Neural Network (RNN). Forming the bidirectional
RNN, gives:

ui(n) = g(wT
i · p(n) +−→r T

i · u(n − 1) +←−r T
i · u(n + 1))

Finally, a bidirectional LSTM network [2] is adopted as the basic regression model for power load
estimation.

{f (n), I (n), h(n),O(n)} = {σ, tanh}(wT ,C
i · p(n) +−→r T ,C

i · u(n − 1) +←−r T ,C
i · u(n + 1))

where C = {f , I , h,O}.

Experimental Evaluation

In this section, the proposed modular, optimized and con-text-aware model, called Bayes-BiLSTM
is evaluated. Specifically, the Bayes-BiLSTM method is compared against other state of the art
deep learning methods (i.e., LSTM, CNN), which lack bidirectionality and context adaptivity. We
also compare the aforementioned results with the state-of-the-art NILM algorithms i.e., FHMM-
based and CO-based methods from NILMTK [3] which are widely used in energy disaggregation
research. Table 1 shows the performance metrics for four selected appliances, which are clothes
dryer (CDE), dishwasher (DWE), heat pump (HPE) and wall oven appliance (WOE) of AMPds
dataset [4].

Fig.2 Shows signature identification examples for four selected appliances (CDE, DWE, HPE, WOE). Here, we
illustrate the performance of our proposed method Bayes-BiLSTM compared to that of CNN (dotted line) as well as
ground truth (grey filled).

Fig.2 shows signature identification examples for the four selected appliances. In this figure, we
illustrate the performance of our proposed method compared to that of CNN as well as ground
truth. As observed, our approach yields better performance in estimating not only ON/OFF
states, but also more complicated energy patterns. This is important since it offers insight on
whether a device is active as well as how it contributes to the total energy consumption.

Configurations  𝝅𝑖 extracted from Bayesian 
Optimization 1 2 3 4

Number of BiLSTM layers 1 1 2 1

Hidden units in BiLSTM layers 74 77 42/34 60

Performance Error (RMSE (W)) 488.67 442.04 340.55 62.19

1
2

3

4
0

100

200

300

400

500

600

P
er

fo
rm

an
ce

 E
rr

o
r 

(W
)

Clothes Dryer Appliance (CDE)

D i a g r a m s h o w i n g t h e p e r f o r m a n c e
e r r o r p e r c o n f i g u r a t i o n 𝝅𝒊

𝑷𝒋

BASIC LSTM STRUCTURE

Forward
layer

Backward
layer

Full-connected
layer

LSTM

LSTMLSTM

LSTM LSTM

LSTM

𝑷𝒂𝒈𝒈

Hyper-parameter 

Optimization

Using Gaussian 

Process

Configuration

𝝅𝑖

Optimal
Configuration 

Fig.3 Bayesian optimization results for CDE.

For each appliance, we have built a Bayes-BiLSTM. Bayesian optimization is used for opti-
mally estimating the structure of each Bayes-BiLSTM, as illustrated in the flowchart showing the
proposed methodology’s adopted procedure (Fig.3). This figure also shows the CDE’s validation
performance and the model’s hyperparameters respectively, for four successive iterations. The
final iteration performs best, as expected.

Comparisons

Next, we perform comparisons using the Estimated Energy Fraction Index (EEFI) and Actual
Energy Fraction Index (AEFI) indicators defined as:

EEFI (j) =

√√√√ ∑M
j=1 p̂j(n)∑

n

∑M
j=1 p̂j(n)

AEFI (j) =

√√√√ ∑M
j=1 pj(n)∑

n

∑M
j=1 p̂j(n)

DEFI (j) = |EEFI (j)− AEFI (j)|
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Fig.4 Comparisons using DEFI indicator.

Fig.4 Depicts the difference DEFI for the selected appliances over all compared methods, verifying
that Bayes-BiLSTM yields the minimum value.

Conclusions

We propose a Bayesian-optimized Bidirectional LSTM regression model for NILM. The Bayes-
BiLSTM model introduces: (i) a modular approach in NILM, which addresses dimensionality
issues arising in cases of large number of appliances; (ii) a non-causal modeling framework
taking into account the inherent structure, which characterizes the operation of multi-state
appliances; (iii) a Bayesian optimization process ensuring the creation of a best fitting config-
uration for each appliance. Our proposed method is compared to the current state-of-the-art
methods.
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