SUPER-RESOLUTION DOA ESTIMATION FOR ARBITRARY ARRAY GEOMETRIES USING A SINGLE NOISY SNAPSHOT ICASSP 2019 Presentation

Anupama Govinda Raj and Prof. James. H. McClellan*

ECE, Georgia Institute of Technology

May 16, 2019

1 Introduction and Notation

2 Details of Proposed Method

1 Introduction and Notation

2 Details of Proposed Method

3 Simulations

Classical Methods

- Non adaptive: Conventional delay-sum beamformer (CBF)
- Data adaptive: MVDR, MUSIC, ESPRIT

Compressed Sensing (CS) based Sparse Methods

- On-grid sparse DOA estimation has offgrid (discretization) problem
- Off-grid DOA methods
 - Fixed grid
 - Dynamic grid
- Gridless method using super-resolution (SR) theory [Candès and Fernandez-Granda 2014] for arrays [Xenaki and Gerstoft 2015]
 - Based on atomic norm or total variation (TV) norm
 - Uses convex optimization (LMI and SDP)
 - Only applicable for ULAs [Xenaki and Gerstoft 2015]

• Develop search-free gridless super-resolution DOA method

- To eliminate offgrid problem of CS
- Extend method to arbitrary array geometries
 - Non-uniform arrays
 - Random Planar 2-D arrays
 - Circular arrays
- Applicable for coherent sources, single snapshot case

- L sources with unknown azimuth DOAs $\boldsymbol{\theta} = \{\theta_1, \theta_2, \dots, \theta_L\}$
- Assumptions:
 - far-field, narrow band sources
 - unknown source amplitudes
 - unknown number of sources (L)
- Objective is to estimate heta, given the data at the sensors
- Array snapshot vector

$$\boldsymbol{y}(t) = \boldsymbol{A}(\boldsymbol{\theta})\boldsymbol{s}(t) + \boldsymbol{n}(t) \in \mathbb{C}^{M \times 1}$$

 $m{s}(t) = [s_1(t), s_2(t), \dots, s_L(t)]^{\mathrm{T}} \in \mathbb{C}^{L imes 1}$ is source amplitude vector $m{n}(t) = [n_1(t), n_2(t), \dots, n_M(t)]^{\mathrm{T}} \in \mathbb{C}^{M imes 1}$ is noise vector

• Array manifold $\boldsymbol{A}(\boldsymbol{\theta}) \stackrel{\Delta}{=} [\boldsymbol{a}(\theta_1), \dots, \boldsymbol{a}(\theta_L)] \in \mathbb{C}^{M \times L}$

• Steering vector $a(\theta_l)$ for the *l*-th source from direction θ_l

$$\frac{a_m(\theta_l) = e^{-j2\pi f \tau_m(\theta_l)}}{e^{-j(2\pi/\lambda)\boldsymbol{u}_{\theta_l}^T \boldsymbol{p}_m}} = e^{-j(2\pi/\lambda)\boldsymbol{u}_{\theta_l}^T \boldsymbol{p}_m}$$

f, λ : frequency, wavelength

$$au_m(heta_l) = oldsymbol{u}_{ heta_l}^T oldsymbol{p}_m / v$$

delay at *m*-th sensor for *l*-th source p_m : position vector of *m*-th sensor u_{θ_l} : unit vector in source direction θ_l v: wave propagation speed

A. Govinda Raj and J. H. McClellan Super-Resolution DOA for Arbitrary Arrays Using Single Snapshot

• DOA estimation as a sparse signal reconstruction problem

- $\boldsymbol{A}(\boldsymbol{\theta}_D) \in \mathbb{C}^{M imes K}$: dictionary of steering vectors
- $\theta_D = \{\theta : \theta = -\pi + 2\pi k/K, k = 1, \dots, K\}$: discrete grid of angles

• Sparse DOA estimation over **continuous** domain

$$\min_{x} \|x\|_{\mathcal{A}} \quad \text{s.t.} \quad \|\boldsymbol{y} - \mathcal{S}x\|_{2} \le \delta$$
$$x(\theta) = \sum_{l=1}^{L} s_{l} \delta(\theta - \theta_{l}), \quad \mathcal{S}x = \int_{-\pi}^{\pi} a_{m}(\theta) x(\theta) d\theta, \quad m = 1, \dots, M$$

Introduction and Notation

2 Details of Proposed Method

3 Simulations

4 Conclusion

Data Model in Continuous Angle Domain

Georgia Tech

• Source amplitude function in continuous angle domain

$$x(\theta) = \sum_{l=1}^{L} s_l \delta(\theta - \theta_l), \quad \text{ with atomic norm } \|x\|_{\mathcal{A}} = \sum_{l=1}^{L} |s_l|$$

Array snapshot vector

$$oldsymbol{y} = \mathcal{S}x + oldsymbol{n}, \quad ext{where } y_m = n_m + \int\limits_{-\pi}^{\pi} a_m(heta) x(heta) d heta, \quad m = 1, \dots, M$$

 $\mathcal{S}(heta)$ is the array manifold surface with m-th component $a_m(heta)$

$$a_m(\theta) = e^{-j(2\pi/\lambda)\boldsymbol{u}_{\theta}^T\boldsymbol{p}_m} = \exp\{-j2\pi(|\boldsymbol{p}_m|/\lambda)\cos(\theta - \angle \boldsymbol{p}_m)\}$$

Proposed Method: Primal and Dual Problems

ĩ

eorgia Tech

Primal Problem

$$\min_{x} \|x\|_{\mathcal{A}} \quad \text{s.t.} \ \|\boldsymbol{y} - \mathcal{S}x\|_{2} \le \delta$$

Dual Problem

$$\max_{\boldsymbol{c}\in\mathbb{C}^M} \Re\{\boldsymbol{c}^H\boldsymbol{y}\} - \delta \|\boldsymbol{c}\|_2 \text{ s.t. } \|\mathcal{S}(\theta)^H\boldsymbol{c}\|_{\infty} \leq 1$$

• For ULA, $b(\theta)$ is a polynomial in $z=e^{-j(2\pi/\lambda)d\sin\theta}$

$$S(\theta)^{H} \boldsymbol{c} = \sum_{m=1}^{M} c_{m} e^{-j(m-1)(2\pi/\lambda)d\sin\theta} = \sum_{m=1}^{M} c_{m} z^{(m-1)}$$

Fourier Domain Polynomial Representation of $b(\theta)$ Georgia Tech

- For arbitrary arrays, $b(\theta)$ does not have a direct polynomial form
- Fourier Domain approach, motivated by [Rübsamen and Gershman 2009] also [Doron & Doron, 1994]

•
$$b(\theta) = S(\theta)^H c = \sum_{m=1}^M a_m^*(\theta) c_m$$

• $a_m^*(\theta)$ periodic $\Rightarrow b(\theta)$ periodic \Rightarrow Fourier Series (FS)
• $b(\theta) = \sum_{k=-\infty}^{\infty} B_k e^{jk\theta}$, where $B_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} b(\theta) e^{-jk\theta} d\theta$
• $a_m^*(\theta)$ is smooth, bandlimited $\Rightarrow b(\theta)$ is bandlimited
• Finite Fourier Series $(2N + 1 \text{ coeffs})$ $b(\theta) = \sum_{k=-N}^N B_k e^{jk\theta}$
• $b(\theta) \rightarrow b(z)\Big|_{z=e^{j\theta}}$ is the dual polynomial

Fourier Domain Representation of $a_m(\theta)$

• How to get
$$\hat{B}_k$$
's? $B_k = \sum_{m=1}^M \alpha_m[k] c_m$

• $\alpha_m[k]$ are FS coeffs of $a_m^*(\theta) = \exp\{j2\pi(|\boldsymbol{p}_m|/\lambda)\cos(\theta - \angle \boldsymbol{p}_m)\}$

• <u>DFT</u> is used to <u>obtain finite FS</u> of a bandlimited function

. .

• Compute $\hat{\alpha}_m[k]$ via P-point DFT; P = 2N + 1, $\Delta \theta = 2\pi/P$

37

$$\begin{split} & \underset{\hat{\alpha}_{m}[k] \approx \alpha_{m}[k]}{\text{approximation}} & \hat{\alpha}_{m}[k] = \frac{1}{P} \sum_{l=-N}^{N} a_{m}^{*}(l\Delta\theta) e^{-j(2\pi/P)lk} \\ & \bullet \text{ Now, } \hat{B}_{k} = \sum_{m=1}^{M} \hat{\alpha}_{m}[k] c_{m} \text{, so we have } b(\theta) \approx \sum_{k=-N}^{N} \hat{B}_{k} e^{jk\theta} \rightarrow \hat{b}(z), \\ & \left[\hat{B}_{-N} \ \hat{B}_{-(N-1)} \ \dots \ \hat{B}_{N} \right]^{T} \stackrel{\Delta}{=} \mathbf{h} = \mathbf{G}^{H} \mathbf{c}, \\ & \mathbf{G}^{H} = \left[\hat{\alpha}_{m}[k] \right]_{P \times M}; \quad m\text{-th column has FS coefficients of } a_{m}^{*}(\theta) \end{split}$$

Fourier Domain Bandwidth Approximation of $a_m(\theta)$ Tech

• Selection of P for accurate polynomial representation

- FS bandwidth of $a_m(\theta) = \exp\{-j2\pi(|{m p}_m|/\lambda)\cos(\theta-\angle{m p}_m)\}$
- Plot magnitude of $\hat{\alpha}_m[k]$ vs. $|\pmb{p}|/\lambda$

(a) DFT spectrum of $a_m^*(\theta)$ (20 $\log_{10}|\alpha_k| dB$) as a function of k and $|p|/\lambda$, (b) P vs. normalized distance $|p|/\lambda$ for different spectral cutoff levels (γ).

• Linear rule for P w.r.t distance $|\mathbf{p}|$ of farthest sensor from reference For $\gamma = -160 \text{ dB}$, $P = 15.9 |\mathbf{p}| / \lambda + 27.03$

Semidefinite Programming and Source Recovery

• Dual Program to Semidefinite Program (SDP)

$$\max_{\boldsymbol{c},\boldsymbol{H}} \Re\{\boldsymbol{c}^{H}\boldsymbol{y}\} - \boldsymbol{\delta} \|\boldsymbol{c}\|_{2}; \text{ s.t. } \begin{bmatrix} \boldsymbol{H}_{P \times P} & \boldsymbol{G}_{P \times M}^{H} \boldsymbol{c}_{M \times 1} \\ \boldsymbol{c}^{H} \boldsymbol{G} & 1 \end{bmatrix} \succeq 0,$$
$$\sum_{i=1}^{P-j} \boldsymbol{H}_{i,i+j} = \begin{cases} 1, & j = 0 \\ 0, & j = 1, \dots, P-1. \end{cases}$$

SDP has $n = P^2/2 + M$ variables. Worst case complexity $O(n^3)$ • Recover source DOAs $\hat{\theta}$ from unit-circle roots of nonnegative poly.

$$p(z) = 1 - |\hat{b}(z)|^2 = \sum_{k=-(P-1)}^{P-1} r_k z^k$$

 $r_k = \sum_j h_j h_{j-k}^*$ are autocorrelation coeffs of $h_* = G^H c_*$ • Recover source amplitudes by least-squares

$$\hat{m{s}} = m{A}(\hat{m{ heta}})^\dagger m{y}$$

15 / 29

Algorithm: Super-Resolution DOA for Arbitrary Array

Input: Array snapshot vector $\boldsymbol{y} \in \mathbb{C}^M$, wavelength λ , number of Fourier coeffs P

- 1. For the sensor positions, compute $G^H = [\hat{\alpha}_m[k]]_{P \times M}$ using the DFT to obtain the FS of the array manifold (OFF-LINE)
- 2. Estimate noise level, and then set $\boldsymbol{\delta}$
- 3. Using G^H and y as inputs, solve the SDP to find optimal c_*
- 4. Compute the optimal dual polynomial coefficients-vector $m{h}_*$, using $m{h}_*=m{G}^Hm{c}_*$
- 5. Estimate DOAs $\hat{\theta}$ by finding the unit-circle roots of nonnegative polynomial p(z)
- 6. Eliminate extraneous zeros via ℓ_1 recovery
- 7. Recover source amplitudes \hat{s} by least squares

A. Govinda Raj and J. H. McClellan Super-Resolution DOA for Arbitrary Arrays Using Single Snapshot

• The observed time complexity seems to grow as P^2

- SDP has $n = P^2/2 + M$ variables.
- ${\, \bullet \, }$ Significantly less than the worst case complexity of ${\cal O}(n^3)$

Case	Р	Radius	Time for SDP	Poly. rooting	# Iterations
1	61	2λ	5.31 sec	0.04 sec	17
2	121	5.87λ	14.79 sec	0.15 sec	18
3	183	9.75λ	57.9 sec	0.37 sec	19

Table: Execution time

Intel core i7 processor, M = 40, Three sources

Introduction and Notation

2 Details of Proposed Method

- Simulations for Uniform Circular and Random Planar Arrays (Noise-free)
- Performance Evaluation using Success Probability (Noise-free)
- Simulations for Noisy Case
 - White and Colored Noise Examples
 - ℓ_1 Recovery Result
 - Performance Evaluation Vs. Signal to Noise Ratio (SNR)

 $\mathsf{SNR} = \frac{\mathsf{Source Power}}{\mathsf{Noise Power}}$ at each sensor

• All Simulations use Coherent Sources and Single Snapshot

Simulation for Uniform Circular Array (UCA)

Simulation for Random Planar Array (RPA)

Performance Evaluation for Resolution

Success probability of M = 40 UCA (a) versus r/λ and P, with fixed $\Delta_{\min} = 10^{\circ}$. (b) versus minimum source separation Δ_{\min} and L with fixed $r/\lambda = 1.59$.

- Success probability
 - Fig. (a): 50 random trials for each P and $r/\lambda.$ Fixed $\Delta_{\min}=10^\circ$
 - L = 10 sources with random DOAs $\sim \mathcal{U}(-\pi, \pi]$
 - $\bullet\,$ Success declared when all DOAs are estimated within $0.001^\circ\,$ error
 - Fig. (b): Fixed radius $r/\lambda = 1.59$, P = 53, and 10 trials

Simulations for Noisy Case: Colored Noise Example

Result for RPA with M = 30, P = 63, max $|\mathbf{p}| \approx 2\lambda$. Two equal magnitude sources at 60° and 70° . SNR = 20 dB. $\delta = 1.4e_n$. Minimum sensor spacing = $\lambda/4$.

DOA RMSE = 0.8882° Amplitude RMSE = 0.4693

Simulations for Noisy Case: RPA, M = 40

Result for RPA with M = 40, P = 63, max $|\mathbf{p}| \approx 2\lambda$. Two equal magnitude sources at 60° and 70° . SNR = 20 dB. $\delta = 1.4e_n$. Minimum sensor spacing = $\lambda/4$.

DOA RMSE = 0.5583° Amplitude RMSE = 0.3652

Simulations for Noisy Case: ℓ_1 Recovery

Result for UCA with radius = 2λ , M = 40, P = 63. $\delta = 1.4e_n$.

Five sources with SNR = $5\,\text{dB}$ at $-10.7^\circ, 27.5^\circ, 40^\circ, 73.7^\circ$ and -151.1°

• Extraneous roots from polynomial rooting

DOA RMSE = 0.5617° Amplitude RMSE = 0.2016

- Need ℓ_1 recovery to remove unwanted roots
- Estimate amplitudes by least-squares

DOA accuracy vs. SNR for UCA with $r = 2\lambda$, M = 30, and P = 63. 50 trials, two sources at random DOAs in each trial. Additive noise $\mathcal{CN}(0, \sigma)$ per sensor $\Rightarrow e_n = \mathbb{E}[\|\mathbf{n}\|_2] = \sqrt{M\sigma^2}$

- Introduction and Notation
- 2 Details of Proposed Method
- 3 Simulations

- Search-free gridless SR DOA method for arbitrary arrays using single noisy snapshot
 - Formulated problem as an atomic norm minimization
 - Fourier domain approach for polynomial representation of manifold
 - Finite SDP formulation for arbitrary arrays, solvable in polynomial time
- No strong source masking weak source problem, unlike CBF
- Applicable for coherent sources, single snapshot, and colored or white noise scenarios
- Larger impact: Applicable to generic data model involving periodic measurement functions, and to other applications.

Thank You!