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DOA Estimation Methods

Classical Methods

Non adaptive: Conventional delay-sum beamformer (CBF)

Data adaptive: MVDR, MUSIC, ESPRIT

Compressed Sensing (CS) based Sparse Methods

On-grid sparse DOA estimation - has offgrid (discretization) problem

Off-grid DOA methods

Fixed grid
Dynamic grid

Gridless method using super-resolution (SR) theory [Candès and

Fernandez-Granda 2014] for arrays [Xenaki and Gerstoft 2015]

Based on atomic norm or total variation (TV) norm
Uses convex optimization (LMI and SDP)
Only applicable for ULAs [Xenaki and Gerstoft 2015]
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Objective of Proposed Research

Develop search-free gridless super-resolution DOA method

To eliminate offgrid problem of CS

Extend method to arbitrary array geometries

Non-uniform arrays
Random Planar 2-D arrays
Circular arrays

Applicable for coherent sources, single snapshot case
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Data Model for Arbitrary Array DOA Estimation

M sensors, known sensor positions

L sources with unknown azimuth DOAs θ = {θ1, θ2 . . . , θL}
Assumptions:

far-field, narrow band sources
unknown source amplitudes
unknown number of sources (L)

Objective is to estimate θ, given the data at the sensors

Array snapshot vector

y(t) = A(θ)s(t) + n(t) ∈ CM×1

s(t) = [s1(t), s2(t), . . . , sL(t)]T ∈ CL×1 is source amplitude vector
n(t) = [n1(t), n2(t), . . . , nM (t)]T ∈ CM×1 is noise vector
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Array manifold A(θ)
∆
= [a(θ1), . . . ,a(θL)] ∈ CM×L

Steering vector a(θl) for the l-th source from direction θl

am(θl) = e−j2πfτm(θl) = e
−j(2π/λ)uTθl

pm

pm

p1

pM

p2

y

z

x

plane wave

uθl

f , λ: frequency, wavelength

τm(θl) = uTθlpm/v

delay at m-th sensor for l-th source

pm: position vector of m-th sensor

uθl : unit vector in source direction θl

v: wave propagation speed
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Sparse DOA Estimation: Discrete vs Continuous

DOA estimation as a sparse signal reconstruction problem

min
x∈CK

‖x‖1︸ ︷︷ ︸
sparse x

s.t. ‖y −A(θD)x‖2 ≤ ε︸ ︷︷ ︸
match measurements

A(θD) ∈ CM×K : dictionary of steering vectors

θD = {θ : θ = −π + 2πk/K, k = 1, . . . ,K}: discrete grid of angles

Sparse DOA estimation over continuous domain

min
x
‖x‖A s.t. ‖y − Sx‖2 ≤ δ

x(θ) =

L∑
l=1

slδ(θ − θl), Sx =

π∫
−π

am(θ)x(θ)dθ, m = 1, . . . ,M
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Data Model in Continuous Angle Domain

Source amplitude function in continuous angle domain

x(θ) =

L∑
l=1

slδ(θ − θl), with atomic norm ‖x‖A =

L∑
l=1

|sl|

Array snapshot vector

y = Sx+ n, where ym = nm +

π∫
−π

am(θ)x(θ)dθ, m = 1, . . . ,M

S(θ) is the array manifold surface with m-th component am(θ)

am(θ) = e−j(2π/λ)uTθ pm = exp{−j2π(|pm|/λ) cos(θ − ∠pm)}
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Proposed Method: Primal and Dual Problems

Primal Problem

min
x
‖x‖A s.t. ‖y − Sx‖2 ≤ δ

Dual Problem

max
c∈CM

<{cHy} − δ‖c‖2 s.t. ‖S(θ)Hc‖∞ ≤ 1

b(θ) = S(θ)Hc =
M∑
m=1

a∗m(θ)cm

c is a vector of Lagrange multipliers (dual variables)

|b(θ)| = 1 for true source directions

For ULA, b(θ) is a polynomial in z = e−j(2π/λ)d sin θ

S(θ)Hc =

M∑
m=1

cme
−j(m−1)(2π/λ)d sin θ =

M∑
m=1

cmz
(m−1)

A. Govinda Raj and J. H. McClellan Super-Resolution DOA for Arbitrary Arrays Using Single Snapshot 11 / 29



Fourier Domain Polynomial Representation of b(θ)

For arbitrary arrays, b(θ) does not have a direct polynomial form

Fourier Domain approach, motivated by [Rübsamen and Gershman 2009]

also [Doron & Doron, 1994]

b(θ) = S(θ)Hc =
M∑
m=1

a∗m(θ) cm

a∗m(θ) periodic ⇒ b(θ) periodic =⇒ Fourier Series (FS)

b(θ) =

∞∑
k=−∞

Bke
jkθ, where Bk =

1

2π

π∫
−π

b(θ)e−jkθdθ

a∗m(θ) is smooth, bandlimited =⇒ b(θ) is bandlimited

Finite Fourier Series (2N + 1 coeffs) b(θ) =

N∑
k=−N

Bke
jkθ

b(θ)→ b(z)

∣∣∣∣
z=ejθ

is the dual polynomial
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Fourier Domain Representation of am(θ)

How to get B̂k’s? Bk =
M∑
m=1

αm[k] cm

αm[k] are FS coeffs of a∗m(θ) = exp{j2π(|pm|/λ) cos(θ − ∠pm)}

DFT is used to obtain finite FS of a bandlimited function

Compute α̂m[k] via P -point DFT; P = 2N + 1, ∆θ = 2π/P

α̂m[k] =
1

P

N∑
l=−N

a∗m(l∆θ)e−j(2π/P )lk

Now, B̂k =
M∑
m=1

α̂m[k] cm, so we have b(θ) ≈
N∑

k=−N
B̂ke

jkθ → b̂(z),

[
B̂−N B̂−(N−1) . . . B̂N

]T ∆
= h = GHc,

GH =
[
α̂m[k]

]
P×M ; m-th column has FS coefficients of a∗m(θ)
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Fourier Domain Bandwidth Approximation of am(θ)

Selection of P for accurate polynomial representation
FS bandwidth of am(θ) = exp{−j2π(|pm|/λ) cos(θ − ∠pm)}
Plot magnitude of α̂m[k] vs. |p|/λ
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(b)

(a) DFT spectrum of a∗m(θ) (20 log10|αk| dB ) as a function of k and |p|/λ,
(b) P vs. normalized distance |p|/λ for different spectral cutoff levels (γ).

Linear rule for P w.r.t distance |p| of farthest sensor from reference

For γ = −160 dB, P = 15.9|p|/λ+ 27.03
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Semidefinite Programming and Source Recovery

Dual Program to Semidefinite Program (SDP)

max
c,H
<{cHy} − δ‖c‖2 ; s.t.

[
HP×P GH

P×McM×1

cHG 1

]
� 0,

P−j∑
i=1

Hi,i+j =

{
1, j = 0
0, j = 1, . . . , P − 1.

SDP has n = P 2/2 +M variables. Worst case complexity O(n3)

Recover source DOAs θ̂ from unit-circle roots of nonnegative poly.

p(z) = 1− |b̂(z)|2 =

P−1∑
k=−(P−1)

rkz
k

rk =
∑

j hjh
∗
j−k are autocorrelation coeffs of h∗ = GHc∗

Recover source amplitudes by least-squares

ŝ = A(θ̂)†y
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Algorithm: Super-Resolution DOA for Arbitrary Array

Input: Array snapshot vector y ∈ CM , wavelength λ, number of Fourier coeffs P

1. For the sensor positions, compute GH =
[
α̂m[k]

]
P×M using the DFT to obtain

the FS of the array manifold (OFF-LINE)
2. Estimate noise level, and then set δ
3. Using GH and y as inputs, solve the SDP to find optimal c∗
4. Compute the optimal dual polynomial coefficients-vector h∗, using h∗ = GHc∗
5. Estimate DOAs θ̂ by finding the unit-circle roots of nonnegative polynomial p(z)
6. Eliminate extraneous zeros via `1 recovery
7. Recover source amplitudes ŝ by least squares

Sensor Data
y

SDP

Dual
Polynomial
Coeffs h∗

Nonnegative
Polynomial

[p(z)]
Rooting +
`1 Recovery

Least-
Squares

Array
Manifold

Fourier
Series Rep-
resentation DOAs

Amplitudes
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Running Time Examples

The observed time complexity seems to grow as P 2

SDP has n = P 2/2 +M variables.

Significantly less than the worst case complexity of O(n3)

Table: Execution time

Case P Radius Time for SDP Poly. rooting # Iterations

1 61 2λ 5.31 sec 0.04 sec 17
2 121 5.87λ 14.79 sec 0.15 sec 18
3 183 9.75λ 57.9 sec 0.37 sec 19

Intel core i7 processor, M = 40, Three sources
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Simulations

Simulations for Uniform Circular and Random Planar Arrays
(Noise-free)

Performance Evaluation using Success Probability (Noise-free)

Simulations for Noisy Case

White and Colored Noise Examples

`1 Recovery Result

Performance Evaluation Vs. Signal to Noise Ratio (SNR)

SNR = Source Power
Noise Power at each sensor

All Simulations use Coherent Sources and Single Snapshot
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Simulation for Uniform Circular Array (UCA)
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(c) Zeros of p(z)
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(d) CBF vs. Proposed

UCA with r = 2λ, M = 40, P = 61. Sources at −10.3◦, 30.5◦, 70.7◦, magnitudes 5, 30, 7.
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Simulation for Random Planar Array (RPA)
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(a) Random Planar Array (RPA)
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(b) CBF vs. Proposed Method

Result for RPA with M = 30, P = 61. Farthest sensor at r/λ ≈ 2.

Three sources at DOAs −65.1◦, 37.5◦, 50.7◦, equal magnitudes.

Noise-free case: estimates of directions and magnitudes are perfect.
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Performance Evaluation for Resolution
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(b)

Success probability of M = 40 UCA (a) versus r/λ and P , with fixed ∆min = 10◦.
(b) versus minimum source separation ∆min and L with fixed r/λ = 1.59.

Success probability
Fig. (a): 50 random trials for each P and r/λ. Fixed ∆min = 10◦

L = 10 sources with random DOAs ∼ U (−π, π]
Success declared when all DOAs are estimated within 0.001◦ error

Fig. (b): Fixed radius r/λ = 1.59, P = 53, and 10 trials
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Simulations for Noisy Case: Colored Noise Example
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(b) Zeros of p(z)
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(c) CBF vs. Proposed Method

UCA with r = 2λ, M = 40 sensors, P = 63. Two sources at 40◦, 50◦; SNR = 20 dB.
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DOA RMSE = 0.6088◦

Amplitude RMSE = 0.6712



Simulations for Noisy Case: RPA, M = 30
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(a) Random Planar Array (RPA)
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(b) Zeros of p(z)

Result for RPA with M = 30, P = 63, max |p| ≈ 2λ.

Two equal magnitude sources at 60◦ and 70◦.

SNR = 20 dB. δ = 1.4en.

Minimum sensor spacing = λ/4.
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DOA RMSE = 0.8882◦

Amplitude RMSE = 0.4693



Simulations for Noisy Case: RPA, M = 40
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(a) Random Planar Array (RPA)
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(b) Zeros of p(z)

Result for RPA with M = 40, P = 63, max |p| ≈ 2λ.

Two equal magnitude sources at 60◦ and 70◦.

SNR = 20 dB. δ = 1.4en.

Minimum sensor spacing = λ/4.
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DOA RMSE = 0.5583◦

Amplitude RMSE = 0.3652



Simulations for Noisy Case: `1 Recovery
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(b) CBF vs. Proposed Method

Result for UCA with radius = 2λ, M = 40, P = 63. δ = 1.4en.

Five sources with SNR = 5 dB at −10.7◦, 27.5◦, 40◦, 73.7◦ and −151.1◦

Extraneous roots from polynomial rooting

Need `1 recovery to remove unwanted roots

Estimate amplitudes by least-squares
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Amplitude RMSE = 0.2016



Performance Evaluation vs. SNR
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(a) Source Separation = 10◦
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(b) Source Separation= 30◦

DOA accuracy vs. SNR for UCA with r = 2λ, M = 30, and P = 63.

50 trials, two sources at random DOAs in each trial.

Additive noise CN (0, σ) per sensor ⇒ en = E[‖n‖2] =
√
Mσ2
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Conclusion

Search-free gridless SR DOA method for arbitrary arrays using single
noisy snapshot

Formulated problem as an atomic norm minimization
Fourier domain approach for polynomial representation of manifold
Finite SDP formulation for arbitrary arrays, solvable in polynomial time

No strong source masking weak source problem, unlike CBF

Applicable for coherent sources, single snapshot, and colored or white
noise scenarios

Larger impact: Applicable to generic data model involving periodic
measurement functions, and to other applications.
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Thank You!
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