
Steering	response	power	(SRP)	w.r.t.	a	direction	of	arrival		
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Initialization	Effect	of	Multi-channel	Layer	
	
	
	
	
	
	
	
•  Initializing	the	spatial	filtering	layer	with	beamformer’s	
weight	leads	to	better	accuracy.		

Overall	Improvement	from	Baseline	
	
	
	
	
	
	
	
	
•  Beamforming	with	7	microphones	can	improve	recognition	
performance.	

•  The	fully-learnable	two-channel	models	provide	better	
accuracy	than	7-channel	beamforming.		

•  	The	ESF	architecture	provides	the	best	accuracy	in	this	
experiment;	the	learnable	feature	front-end	(DFT	model)	
itself	can	improve	recognition	accuracy.	

Our	Far-field	ASR	system	
•  We	unify	a	multi-channel	front-end	and	phone	classifier	so	as	to	minimize	a	phone	classification	error.		

•  Our	initial	fully-learnable	network	mimics	a	conventional	ASR	processing	initially	but	removes	a	speech	clean	reconstruction	
step.	

	

•  Our	whole	multi-channel	network	is	trained	in	a	stage-wise	manner;	the	classification	layers	are	first	trained	with	the	log-
filter-bank	energy	features	(LFBE).	The	feature	extraction	and	classification	layers	are	then	trained	jointly	with	single	channel	
DFT	features.	After	we	add	multi-channel	(spatial	filtering)	layers	initialized	with	super-directive	(SD)	beamformers’	weights,	
we	fine-tune	the	whole	network	with	multi-channel	DFT	features.		

	

Multi-channel	(spatial	filtering)	network	

	

	

	

	

	

	

	

Every	multi-channel	layer	is	initialized	with	SD	beamformers’	weights.	

CAT	is	similar	with	the	network	architecture	described	in	[9].	

Background	
Why	do	we	need	multiple	microphones	for	far-field	speech	recognition?	
We	can	leverage	spatial	information	by	measuring	sound	pressure	at	multiple	points,	which	enables	us	to		
•  Suppress	interfering	signals	based	on	a	direction	of	signal	arrival,	and		
•  Maintain	the	minimum	distortion	amount	for	a	look	direction	
	
Far-field	wave	propagation	model	
	
	
	
	
	
	
	
	
	
	
Beampattern	plot	(spatial	directivity)	
Beampatterns	for	the	linear	aperture	(dotted	line)	and	linear	array	(solid	line)	with	11	microphones		

	
	
•  Unlike	those	for	the	linear	aperture,	beampatters	for	the	linear	array	are	periodic;	there	will	be	grating	lobes	because	of	

spatial	aliasing.		
•  We	may	not	be	able	to	pick	up	one	direction	at	high	frequency	because	of	the	grating	lobes.	
•  The	sidelobes	limit	the	performance	of	interfering	signal	suppression.	

Whatever	method	is	used	for	estimating	the	weights	of	spatial	filters,	it	will	just	control	spatial	directivity.	

	

Speech	enhancement	approaches	for	spatial	filter	estimation	
	

	

	

	

*	Good	speaker	tracking	will	be	required	for	real-time	beamforming.			

Most	of	conventional	techniques	are	implemented	in	BTK:	https://distantspeechrecognition.sourceforge.io/	

FREQUENCY	DOMAIN	MULTI-CHANNEL	ACOUSTIC	MODELING	FOR	DISTANT	SPEECH	RECOGNITION			
Minhua	Wu,	Kenichi	Kumatani,	Shiva	Sundaram,	Nikko	Ström,	Björn	Hoffmeister	

Abstract	
Goal:		
•  Building	an	optimal	acoustic	model	for	far-field	automatic	speech	recognition	(ASR):	

ü  Achieving	the	better	recognition	accuracy	with	a	fewer	microphones,	
ü  Real-time	processing	without	bi-directional	processing	or	batch	processing,	and		
ü  Making	a	whole	front-end	learnable	from	a	large	amount	of	real-world	data	without	risky	adaptation.	

Our	approach:		
•  Unifying	acoustic	signal	processing	and	ASR	acoustic	model	with	a	fully	learnable	neural	network	
•  Incorporating	the	sound	propagation	model	into	a	neural	network	
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Distant Speech Recognition: No Black Boxes Allowed

Beampatterns for the Linear Array

Unlike those for the linear aperture, beampatters for the linear
array are periodic.
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Figure: Beampatterns for the linear aperture (dotted line) and linear
array (solid line) with S = 11 and a) d/� = 1
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a)	low	frequency:	d/λ=fd/c=1/2 b)	mid	frequency:	d/λ=fd/c=1 c)	high	frequency:	d/λ=fd/c=3/2 

Mainlobe	

Sidelobes	

Grating	lobes	Mainlobe	 Mainlobe	Grating	lobes	

Processing	Type	 Need	Adaptation	Data?		 Representative	Methods	

Real-time	processing	
No	

Data-independent	beamforming	[1,2,3,4,7]	
Binaural	processing	[4,8]	
Beamforming	with	PIT	[10]	

Yes	 Adaptive	optimum	beamforming	[1,3,4,7]	

Batch	processing	 Yes	

Maximum	likelihood	beamforming	[6]	
Maximum	super-Gaussian	beamforming	[3,4]	
Speech-noise	mask-based	beamforming	[5]	
Source	separation	such	as	NMF	[2,7]	
Black	box	approach	such	as	deep	clustering	[5]	

ASR	Experiments	
•  We	used	approximately	1100	hours	of	speech	spoken	by	human	beings,	collected	with	the	7	microphone	circular	array	in	various	
rooms	and	split		1,000	and	100	hours	into	training	and	test	sets	where	there	is	no	overlapping	speaker	between	sets	

•  Part	of	data	are	captured	through	a	Live	traffic	where	the	interactions	between	the	user	and	devices	were	completely	
unconstrained;		
ü  Users	may	move	while	speaking	to	the	device.	
ü  Talker’s	position	may	change	after	each	utterance.	

•  We	observed	that	real-time	adaptive	beamforming	degraded	recognition	accuracy	due	to	steering	errors	[1];	we	omit	results	of	
adaptive	beamforming.		

Hand-crafted	front-end	
•  Robust	SD	beamforming	
•  Beamformer	selection	
•  LFBE	feature	extraction	
•  Causal	feature	normalization	

Learnable		Front-end	optimized	jointly	

Input	1	 Input	2	

FFT	1	 FFT	2	

GMV	Normaliza6on	

Mul6-channel	Network	

log	

Affine	Transform		

Affine	Transform	

SoCmax	

LSTMs	

ReLU	

FE	Network	

Baseline	System	 Proposed	System	

Complex	Affine	Transform	

Power	

Normalized	Multi-channel	Input	

To	Feature	Extraction	Network	

Block	Affine	Transforms	

Power	

Normalized	Multi-channel	Input	

To	Feature	Extraction	Network	

Affine	Transform	

Relu	

Elastic	spatial	filtering	(ESF)	

Affine	Transforms	

Power	

Normalized	Multi-channel	Input	

To	Feature	Extraction	Network	

MaxPool	

Deterministic	spatial	filtering	(DSF)	Complex	affine	transform	(CAT)	

Relationship	between	beamforming	and	multi-channel	network	
Time-domain	beamforming	operation:		
Assuming	 that	we	 build	D	 beamformers	with	S	microphones,	 beamforming	 can	 be	 expressed	 as	 a	 convolution	 process	 of	 a	
multi-channel	signal	with	D	sets	of	FIR	(or	IIR):		

	

	

	

This	is	normally	implemented	in	(subband)	frequency	domain	for	the	sake	of	computational	efficiency.	

Frequency-domain	beamforming	operation:		
Frequency-domain	beamforming	at	frequency	f	can	be	expressed	with	D x S	complex	linear	transformation	

	

	

	

It	is	straightforward	to	build	a	neural	network	that	is	equivalent	to	multiple	beamformers	in	the	frequency	domain.	

	

	

	

	

	

	

Relationship	between	beamforming	and	source	separation:	
•  Blind	source	separation	(BSS)	techniques	attempt	at	unmixing	multiple	sound	sources	without	any	prior	knowledge.		
•  For	N	active	sources,	BSS	is	formulated	as:	

	

	
•  BSS	estimates	the	weights	so	as	to	minimize	mutual	information	of	each	output;	the	LCMV	adaptive	beamformer	can	also	do	

joint	estimation	with	geometrical	constraints;	it	is	empirically	known	that	the	BSS	solution	for	the	row	vector	becomes	null-
steering	beamformer’s	weights.		
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Conclusion	
•  The	fully-learnable	multi-channel	AM	can	provide	the	better	accuracy	with	a		fewer	sensors	than	classical	beamforming.	
•  Everything	can	be	learnt	from	a	large	amount	of	real	data;	we	can	avoid	adaptation	process	that	could	hurt	the	performance.		
•  The	learnable	feature	extraction	front-end	itself	can	provide	better	accuracy	than	the	log	mel-filter	bank	feature.		
•  Initializing	the	neural	network	with	beamformer’s	weight	and	mel-filter	coefficients	leads	to	better	recognition	accuracy.	

Effect	of	Learnable	Feature	Extraction	Front-End	
	
	
	
	
	
	
	
	
•  The	recognition	accuracy	can	be	improved	by	the	learnable	
feature	extraction	network.	

•  The	better	accuracy	is	achieved	by	initializing	the	filter	
bank	layer	with	mel-filter	coefficients.	

WER	w.r.t	a	number	of	microphones	
	
	
	
	
	
	
	
	
•  Recognition	accuracy	is	saturated	at	4	microphones.	
•  There	is	a	little	degradation	with	7	microphones,	but	this	
may	change	if	more	training	data	is	used.	

Visualization	of	Learned	Filter	Bank	(FB)	
We	generated	2-D	plots	of	the	filter	bank	energy	where	the	x-axis	and	y-axis	indicate	the	input	and	output	frequencies.		

	

	

	

	

	
	
•  Random	initialization	provided	a	local	minima	solution.	
•  Initializing	the	affine	transform	with	mel	FB	weights	lead	to	a	meaningful	result,	lower	spectral	resolution	at	a	higher	frequency.	
•  The	number	of	input	channels	did	not	give	an	impact	on	filter	bank	estimate.	

Original	mel	FB	(band-limited)	 FB	trained	with	random	initialization	in	
the	case	of	single	channel	input	

FB	updated	from	mel	FB	in	the	case	
of	single	channel	input	

FB	updated	from	mel	FB	in	the	case	
of	two-channel	input	

The	left	figure	shows	the	SRP	of	super-directive	
beamforming	(initial)	and	ESF	network	(after	training)	in	the	
case	of	two-channel	input.		
Each	line	indicates	the	directivity	of	the	spatial	filter,	how	
much	the	filter	strengthens	or	attenuates	a	signal	coming	
from	a	particular	direction.		
The	ESF	network	combines	those	filters	with	weights;	
Spatial	filters	(beamformers)	were	combined	in	a	soft-
decision	manner	so	as	to	maximize	the	phone	classification	
accuracy	unlike	determining	a	beam	direction	in	a	hard-
decision	manner.		
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