MULTI-GEOMETRY SPATIAL ACOUSTIC MODELING FOR DISTANT SPEECH RECOGNITION

Kenichi Kumatani, Minhua Wu, Shiva Sundaram, Nikko Ström, Björn Hoffmeister

Acknowledgements: Arindam Mandal, Brian King, Chris Beauchene, Gautam Tiwari, I-Fan Chen, Jeremie Lecomte, Lucas Seibert, Roland Maas, Sergey Didenko, Zaid Ahmed

Abstract

Goal:

- Building a single acoustic model that can cover multiple array geometries
- Making the model optimal for far-field automatic speech recognition (ASR)
- Achieving real-time processing without any non-causal processing pass

Our approach:

- Training the multi-geometry array front-end and phone classifier jointly with the real-world data.

Technical Issue

What is array geometry?

array geometry structure.

Array geometry mismatch

array geometry conditions.

Conventional solutions

Method	Need Supervised Signal?	Need Adaptation Data?	Possible disadv
Self-calibration	Yes	No	Supervised sign signal will need
Calibration with noise field	No	Yes	A noise field mu
Microphone selection	No	Yes	Ignoring sensor possible noise s
Feature-based approach	No	No	This will not ma channel inform
Blind estimation	No	Yes	One utterance of maintaining per
Multi-style training	No	No	Multiple array gue usually incorpo

See also the papers for more details.

Our strategy

trained with multi-geometry array data so as to maximize the phone classification error.

References

Speech Recognition", ICASSP 2019.

[2] I. J. Tashev, *Sound Capture and Processing: Practical Approaches*, Wiley, Chichester, UK, 2009.

- [3] I. McCowan et al., "Microphone array shape calibration in diffuse noise fields," IEEE Trans. ASLP, 2008.
- [4] K. Kumatani et al., "Channel selection based on multichannel cross-correlation coefficients for distant speech recognition," in Proc. HSCMA, 2011. [5] S. Braun et al., "Multi- channel attention for end-to-end speech recognition," in *Proc. Interspeech*, 2018.
- [6] T. Higuchi et al., "Frame-by-frame closed-form update for mask-based adaptive MVDR beamforming," in Proc. ICASSP, 2018. [7] T.N.Sainath et al., "Speaker location and microphone spacing invariant acoustic modeling from raw multichannel waveforms," in *Proc. ASRU*, 2015.

Notice that the WTSF net can reduce the number of parameters significantly.

energy.

amazon echo

- ✓ The ESF network combines all the array output in a unconstrained weighted manner.

✓ The WTSF net applies the same weight to all the frequency bins and picks the array output with the maximum

ASR Experiments

- unconstrained;
- ✓ Users may move while speaking to the device.
- ✓ Talker's position may change after each utterance.
- adaptive beamforming.

Change of array geometry

- We created different array geometry by selecting 2 or 4 sensors from 7 microphones.
- Two microphone case: clustering a pair of microphones based on microphone spacing
- Four microphone cases: grouping a set of congruent quadrilaterals and disordering the channels

Robustness against unseen array geometry

Modeling method LFBE with single mic. LFBE with SD BF ESF with single geometry

ESF with single geometry

ESF with multi-geometry d 2 sets of microphone spac WTSF with multi-geometry 2 sets of microphone space

- training.
- Multi-geometry model can still maintain good accuracy in the mismatched geometry condition. • The WTSF architecture achieve the best accuracy with a much less number of parameters than the fully-connected ESF network.

Coverage of different 4-channel array configuration

- There is significant degradation in the mismatched array configuration condition in the case of the single array geometry model.
- The degradation can be avoided by training the multi-geometry model.

The number in () indicates a dissimilarity index between two arrays which can be expressed as $\sum_{k=1}^{3} |d_{xx}^{(1)} - d_{xx}^{(2)}|$ where $d_{xx}^{(i)}$ is the distance between the s^{th} and the reference sensors of the ith array.

Steering response power (SRP) w.r.t. a direction of arrival

- The left figure shows the SRP of SD beamforming (SD-BF), multigeometry ESF (MG-ESF) and multi-geometry WTSF net (MG-WTF) for two-channel input.
- Each line indicates the directivity of the spatial filter, how much the filter strengthens or attenuates a signal coming from a particular direction.
- Notice that the ESF network will combine the spatial filters with weights in a soft-decision manner so as to maximize the phone classification accuracy; it may permute a look direction among different frequencies. it also tends to amplify the signal.
- The WTF network can avoid such a look direction inconsistency problem although it did not lead to recognition accuracy improvement.

Conclusion

- The fully-learnable multi-channel AM can learn multiple types of microphone array geometry.
- The multi-channel neural network trained with multi-array data can alleviate the mismatch between different array shapes. • The model is also optimal in terms of speech recognition.
- The method neither requires adaptation process nor any bi-directional processing pass.

• We used approximately 1100 hours of speech spoken by human beings, collected with the 7 microphone circular array in various rooms and split 1,000 and 100 hours into training and test sets where there is no overlapping speaker between sets • Part of data are captured through a Live traffic where the interactions between the user and devices were completely

• We observed that real-time adaptive beamforming degraded recognition accuracy due to steering errors [1]; we omit results of

No. channels	No. mismatched WERR (%)			-Single ged		
	sensor locations	SNR>15	$5 \leq \text{SNR} < 15$	SNR≤5	25	
1	0	_	-		20	18.3 (1
7	0	8.2 (-)	7.8 (-)	4.9 (-)	%) 20	
2	0	12.3 (4.5)	16.5 (9.5)	11.1 (6.6)	\simeq 15	17.1 (1
2	1	10.0 (2.0)	15.0 (7.8)	9.8 (5.2)	원 번 10	
4	0	16.4 (9.0)	21.7 (15.1)	15.5 (11.2)		
4	1	13.7 (6.0)	20.9 (14.3)	15.2 (10.9)	ive 5	
4	2	6.8 (-1.5)	12.4 (5.0)	9.4 (4.8)	olat	
2	0	11.6 (3.7)	16.7 (9.7)	11.4 (6.9)	, Re	Ref (
2	1	10.3 (2.2)	16.0 (9.0)	11.0 (6.5)		m1.0
2	0	12.1 (4.2)	17.1 (10.1)	12.3 (7.8)		بند, <u>۱۱۱۱</u> , ۲
2	1	11.0 (3.0)	16.0 (9.0)	11.8 (7.2)		Affa
	No. channels17224442222222222222222222222	$\begin{array}{ c c c c c } \hline \text{No. channels} & \text{No. mismatched} \\ \hline \text{sensor locations} \\ \hline 1 & 0 \\ \hline 7 & 0 \\ \hline 7 & 0 \\ \hline 2 & 0 \\ 2 & 1 \\ \hline 4 & 0 \\ 4 & 1 \\ \hline 4 & 2 \\ \hline 2 & 0 \\ 2 & 1 \\ \hline 2 & 0 \\ 2 & 1 \\ \hline 2 & 0 \\ 2 & 1 \\ \hline \end{array}$	No. channelsNo. mismatched sensor locationsSNR>1510 $-$ 70 $8.2 (-)$ 20 $12.3 (4.5)$ 21 $10.0 (2.0)$ 40 $16.4 (9.0)$ 41 $13.7 (6.0)$ 42 $6.8 (-1.5)$ 20 $11.6 (3.7)$ 21 $10.3 (2.2)$ 20 $12.1 (4.2)$ 21 $11.0 (3.0)$	No. channelsNo. mismatched sensor locationsWERR (%)10 $-$ 70 $8.2 (-)$ 20 $12.3 (4.5)$ 21 $10.0 (2.0)$ 40 $16.4 (9.0)$ 41 $13.7 (6.0)$ 20 $11.6 (3.7)$ 42 $6.8 (-1.5)$ 2110.3 (2.2) $16.0 (9.0)$ 20 $11.6 (3.7)$ 10.3 (2.2) $16.0 (9.0)$ 21 $11.0 (3.0)$ 10.0 (9.0) $16.0 (9.0)$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

• The recognition accuracy largely degrades in the mismatched geometry condition when the single geometry data are only used for

