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Analog-to-Digital-Converters

o Analog-to-digital converters (ADCs) are a key component in most of the
modern digital systems in that they are bridging the gap between the
analog world and digital systems.
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Disadvantages of High-Resolution ADCs
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@ Full-precision ADC requires linear, low-noise amplifiers (LNA).

@ ADC power consumption grows exponentially with sampling rate: a
commercial Texas Instrument 1Gs/s 12-bit ADC requires 4W power
during operation.

@ With bandwidths on the order of a gigahertz in emerging wireless
systems, high-resolution analog-to-digital convertors (ADCs) become a
power consumption bottleneck.

@ Expensive and not practical for large systems with limited processing
power.
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An Alternative: Low-Resolution Sampling using 1-bit ADCs
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@ One-Bit ADC = simpler RF, no automatic gain control, or high cost
LNA.

@ Allows for very high sampling rates at a low cost.

@ Operates at a fraction of power in contrast to high resolution ADCs.

@ One can compensate for quantization error with advanced signal
processing techniques (the subject under investigation here)
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Signal Recovery from One-Bit Noisy Measurements

Question

Is it possible to accurately and efficiently recover a signal x € R” from its
one-bit noisy measurements r = sgn(x — 7)?

@ The answer is Yes— under some conditions!
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Introduction This Work

Signal Recovery from One-Bit Noisy Measurements

In this work, we propose a novel hybrid model-based and data-driven
approach enabling us to accurately recover a signal in the presence of noise
from its one-bit low-resolution samples.

@ The proposed method takes advantage of deep learning and data-driven
inference models while allowing us to provide domain knowledge to the
learning process (combining model-based and data-driven approaches).

© This framework can be seen as a game changing marriage of classical
signal processing techniques and data-driven methods (e.g., machine
learning) = best of both worlds!

© Results in interpretable deep architectures.
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Introduction Machine Learning

Machine Learning vs. Model-Based Signal Processing

vs.

Machine Learning

SR S

@ Machine/Deep Learning: data-driven, algorithm based, and are capable
of tuning to data, and benefits from fixed computational cost.

o Statistical Signal Processing methods: model-based— once solved can be
used for all different problem instances.
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Introduction Machine Learning

Machine Learning and Model-Based Signal Processing

Machine learning, and more specifically deep learning, have shown
remarkable performance in sensing, communication, and inference during the
past decade. However, data-driven methods are ignorant to the underlying
domain knowledge of the problem (problem-level reasoning).

@ Model-based methods: problem domain knowledge can be built into the
model.

@ Deterministic deep neural networks: inference is straightforward but
their architecture are generic and it is unclear how to incorporate
knowledge.
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@ Is there an intuitive way to combine the classical model-based statistical
signal processing methods with data-driven models?

Can we do model-based deep learning? J
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@ Is there an intuitive way to combine the classical model-based statistical
signal processing methods with data-driven models?

Can we do model-based deep learning? Yes. J

ahi, Naimipour, Soltan: ildar Deep One-Bit Signal Recovery ICASSP 2019 10/36



@ Is there an intuitive way to combine the classical model-based statistical
signal processing methods with data-driven models?

Can we do model-based deep learning? Yes.
But how? J
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Introduction Machine Learning

Deep Unfolding Methodology

- Start with a model-based approach and an associated inference algorithm
and unfold the inference iterations as layers in a deep neural network.

- Furthermore, instead of optimizing the original model, the model parameters
are untied across layers, and hence, as to create a potentially more powerful
network.

@ The deep unfolding approach is a game-changing marriage of
model-based and data-driven methods in which well-thought iterative
signal processing or optimization algorithms can be unfolded into the
layers of a deep artificial neural network.

@ benefiting from the expressive power, low computational, complexity,
and data-driven nature of deep neural networks, and also from the
flexibility, versatility, and reliability of model-based methods.
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Introduction Our Goal

Goal

- We consider the general problem of signal recovery from random one-bit
measurements, and propose an efficient signal recovery framework based on
the deep unfolding technique.

- The proposed method has the advantage of low-complexity and near-optimal
performance compared to traditional methods.
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Problem Formulation Signal and Quantization Model

Problem Formulation

We begin by considering a general linear acquisition and one-bit quantization
model described as follows:
Data Acquisition Model

Signal Model:
y=Hx+n
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Problem Formulation Signal and Quantization Model

Problem Formulation

We begin by considering a general linear acquisition and one-bit quantization
model described as follows:

Data Acquisition Model

Signal Model:
y=Hx+n

Quantization Model:

r £ sign(y — 1)
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Problem Formulation Signal and Quantization Model

Problem Formulation

We begin by considering a general linear acquisition and one-bit quantization
model described as follows:

Data Acquisition Model
Signal Model:
y=Hx+n
Quantization Model:
r £ sign(y — 1)
@ where 7 = [rq,...,7i]" denotes the vector of one-bit quantization thresholds.

@ y € RM denotes the received signal prior to quantization.

@ H c RM*N denotes the sensing matrix.

@ x € RY denotes the multidimensional unknown vector to be recovered.

@ n ~ N(0,C) denotes the additive zero-mean Gaussian noise with a known
covariance matrix C = Diag(o?, ..., 03;).

@ sign(-) represents the signum function.
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Maximum Likelihood Estimator

Maximum Likelihood Estimator Derivation

@ Our goal is to recover the original signal x from the one-bit random
measurements r, given the knowledge of the sensing matrix H, noise
covariance C, and the corresponding quantization threshold vector 7.
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Problem Formulation Maximum Likelihood Estimator

Maximum Likelihood Estimator Derivation

@ Our goal is to recover the original signal x from the one-bit random
measurements r, given the knowledge of the sensing matrix H, noise
covariance C, and the corresponding quantization threshold vector 7.

o In this scenario, each binary observation {r;}Y_, follows a Bernoulli
distribution with parameter p;, given by:

i —h
pi =Prob{h]x +n— 7, >0} =Q (T’x> .

Oi
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Problem Formulation Maximum Likelihood Estimator

Maximum Likelihood Estimator Derivation

@ Our goal is to recover the original signal x from the one-bit random
measurements r, given the knowledge of the sensing matrix H, noise
covariance C, and the corresponding quantization threshold vector 7.

o In this scenario, each binary observation {r;}Y_, follows a Bernoulli
distribution with parameter p;, given by:

i —h]
pi =Prob{h]x +n— 7, >0} =Q (T’x> .
i
where Q(x) = 1 — ¢(x) with ¢(x) representing the cumulative
distribution function (CDF) of a standard Gaussian distribution, and th
denotes the i-th row of the matrix H.
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Problem Formulation Maximum Likelihood Estimator

Maximum Likelihood Estimator Derivation

@ Hence, the probability mass function (pmf) of each binary observation
can be compactly expressed as:

pr) =0 (2 (n-ifx) )

@ And the corresponding log-likelihood function is given by

L(x) = p(rlx) = log ,ﬂQ <; (r; h,.Tx)>
-Sowe{e(f (o).
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Problem Formulation Maximum Likelihood Estimator

Maximum Likelihood Estimation and Optimality Condition

As a result the maximum likelihood estimation of the vector x can be obtained
as

Maximum Likelihood Estimation

X = argmax L(x).
X

Deep One-Bit Signal Recovery ICASSP 2019 16/36



Problem Formulation Maximum Likelihood Estimator

Maximum Likelihood Estimation and Optimality Condition

As a result the maximum likelihood estimation of the vector x can be obtained
as

Maximum Likelihood Estimation

X = argmax L(x).
X

@ Observe that the maximum likelihood estimator X has to satisfy the
following optimality condition:

VL (x
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Problem Formulation Maximum Likelihood Estimator

Maximum Likelihood Estimation and Optimality Condition

As a result the maximum likelihood estimation of the vector x can be obtained
as

Maximum Likelihood Estimation

X = argmax L(x).
X

@ Observe that the maximum likelihood estimator X has to satisfy the
following optimality condition:

ViL(x) =0

@ Next, we derive the gradient of the log-likelihood function with respect
to the unknown vector x
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Problem Formulation Maximum Likelihood Estimator

Gradient of the log-likelihood function £(x)

The gradient of the log-likelihood function with respect to the unknown
vector x can be derived as follows:
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Problem Formulation Maximum Likelihood Estimator

Gradient of the log-likelihood function £(x)

The gradient of the log-likelihood function with respect to the unknown
vector x can be derived as follows:

V.L(x) = XN: _n 0 (# (n —nlx))

where Q' (x) = —\/%exp (—x%/2).

@ Further note that the gradient of the log-likelihood function is a linear
combination of the rows of the sensing matrix H.
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Problem Formulation Maximum Likelihood Estimator

Gradient of the log-likelihood function £(x)

e Letn : RM — R be a non-linear function defined as follows:

. O)
o)’

where the functions Q(-), Q’(+), and the division, are applied
element-wise on the vector argument x.

n(x)

@ In addition, let
Q = Diag(ry,...,ru)

be a diagonal matrix containing the one-bit observations. Then,
~ 1
Q=QC?2

represents the semi-whitened version of the one-bit matrix €.
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Problem Formulation Maximum Likelihood Estimator

Gradient of the log-likelihood function £(x)

Using the previous described definitions, the gradient of the log-likelihood
function can be compactly written as

[ (2 (s n)
VL@ =32 10|, (2 (7 —lx))

=|H"Qn (Q(T — Hx)) 3)

h; )

@ Recall that the maximum likelihood estimator ¥ must satisfy the
condition:

VieL(x) = —H'Qn (Q(r — Hx)) =0 4)

@ Other than certain low-dimensional cases, finding a closed-form
expression for X that satisfies (4) is a difficult task = Not practical, use

iterative methods instead.
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Problem Formulation Model-Based Deep Learning

First-Order Methods

@ Alternatively, one can employ the well-known gradient ascent method to
iteratively solve the maximum likelihood estimation problem.

e Namely, given an initial point x(*), the update equation at each iteration
to solve the ML estimation problem is given by:

xHD = x® 4 50T, £(x) (5)
—x® _ sOHTO (Q(T . Hx(k))) ©6)

where %) is the step size at the k-th iteration.

o The iteration in (6) can be used as a baseline to design a deep architecture
where each layer resembles one iteration of the optimization iteration.
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Problem Formulation Model-Based Deep Learning

Another Perspective: Deep Neural Networks

o Analyzing the gradient steps in (6) reveals that the output of each
iteration is a function of linear combination of the previous output
followed by a non-linear function, i.e., let

20 =n (Q(T _ Hx(k))) %)
= n —QHx® + Q7 |. ®)
~— —_—

non-linear function \linear combination of x(*)
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Problem Formulation Model-Based Deep Learning

Another Perspective: Deep Neural Networks

o Analyzing the gradient steps in (6) reveals that the output of each
iteration is a function of linear combination of the previous output
followed by a non-linear function, i.e., let

20 =n (Q(T _ Hx(k))) %)
= n —QHx® + Q7 |. ®)
~— —_—

non-linear function \linear combination of x(*)

@ Therefore:

€))

- (k)
KD Zp 0Ty [ x ] .

0
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Problem Formulation Model-Based Deep Learning

Another Perspective: Deep Neural Networks

o Analyzing the gradient steps in (6) reveals that the output of each
iteration is a function of linear combination of the previous output
followed by a non-linear function, i.e., let

20 =n (Q(T _ Hx(k))) %)
= n —QHx® + Q7 |. ®)
~— —_—

non-linear function \linear combination of x(*)

@ Therefore:

(k+1) ) T & x®)

@ On the other hand, a deep neural network can be similarly interpreted as
a linear combination of the output of each layer, followed by some
non-linear (or linear) function, multiple times!
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Problem Formulation Model-Based Deep Learning

From iterative algorithms to deep architectures

@ Hence, by carefully designing the architecture of a K-layer neural
network and the corresponding weights and non-linear functions of each
layer, it can be interpreted as performing K-iterations of an iterative
algorithm.

o Namely, via unfolding such iterations onto the layers of a deep network,
one can fix the complexity of the inference algorithm (feed-forward for
K-layers), while benefiting from the expressive power of a deep neural
network.
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Problem Formulation DeepRec

DeepRec Architecture

Now, we propose the Deep Recovery (DeepRec) deep architecture, tailored
for tackling the problem of signal recovery from one-bit noisy measurements.
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Problem Formulation DeepRec

DeepRec Architecture

The k-th layer of DeepRec can be characterized via the following operations
and variables:

W = Wy Qr — Wy Hx® + by, (10)

P =n(z), an

O =HTQp®. (12)
(k)

X(k-i-]) :f <W3k |:.:(k):| —|—b2k) R (13)

where x() = 0, f(-) denotes a linear or non-linear activation function (e.g.,
ReLU), and the goal is to optimize the DNN parameters, described as follows:

2 = {Wit, War, Wai, i, bor Y- (14)
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Problem Formulation DeepRec

DeepRec Architecture

@ Note that we over-parametrize the iterations using the weight and bias
vectors, which results in iterations with much higher expressive power,
which this over-parametrization must be compensated for by a longer
training time.

@ Good News: we can generate a dataset with arbitrary size! Because we
know the statistics of the underlying system variables (e.g., noise model,
channel model).

@ Furthermore, the network can be trained for a wide range of system
uncertainties (noise and sensing matrix model), to make it more resilient
to such uncertainties = not directly possible in classical signal
processing methods!
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Problem Formulation DeepRec

o The proposed DeepRec architecture with L layers can be seen as a class
of estimator functions
‘IIE (r ) H ) T)

parametrized by 2 = { Wiy, War, Wag, by, bzk}%: |» to estimate the
unknown vector x, from its one-bit noisy measurements r.

@ In order to find the best estimator function ¥ (r, H, T) associated with
our problem, we conduct a learning process via minimizing a loss
function R(x; ¥=(r,H, 7)), i.e.,

min  R(x; =(r,H, 7)) (15)
@ In this work , we employ the following least squares (LS) loss function:
R (x; @e(r,H,T)) = ||x — ®=(r,H,7)| (16)

@ where during the training phase, we synthetically generate the system
parameters ® = {x,r, H, T} according to their statistical model.
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Numerical Results System Setup

Numerical Results: System Setup

@ The proposed DeepRec framework is implemented using TensorFlow
Library, with ADAM stochastic optimizer, and an exponential decaying
step size.

o In the learning process, we employed the batch training method with a
batch size of 500 at each epoch, and for a total of 2000 epochs.

@ We use the normalized mean squared error (NMSE) defined as

for the performance metric.
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Numerical Results System Setup

Numerical Results: Data Generation

@ Data Generation: The training was performed based on the data
generated via the following model.

Each element of the vector x is assumed to be i.i.d and uniformly
distributed, i.e., x ~ U(dT, 0F).

The sensing matrix is assumed to be fixed and follow a Normal
distribution, where we consider H ~ N(0,1).

The quantization thresholds were also generated from a uniform
distribution, 7 ~ U (5], §7 ) (we assume the quantization threshold is
generated once, and is fixed)

The noise is assumed to be independent from one sample to another and
follows a Normal distribution, where the variance of each corresponding
noise element is different, e.g., the noise covariance

C = Diag(o?,...,03,), with o7 ~ U(J", 7).

Note that we trained the network over a wide range of noise powers in

order to make the DeepRec network more robust to noise.
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Numerical Results DeepRec Performance

Numerical Results: NMSE vs. Number of Layers

«10* DeepRec Performance for M=300 One-Bit Samples
25 T T T T T T T T
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e For this figure, we used the following cost function:

L
> e —x®3
k=1

where x*) denotes the output of the -th layer.
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Numerical Results: NMSE vs. Number of Layers

104 DeepRec Performance for M=300 One-Bit Samples

25

Averaged NMSE
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Number of Layers

@ Such a loss function allows you to use the output of k-th layer as the best
estimation you have after k-layers = allows for controlling the
complexity of the inference model; you may only want to feed-forward
for 10 layers and still have an accurate estimation.
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Numerical Results: NMSE vs. Number of Layers

25

«10* DeepRec Performance for M=300 One-Bit Samples

Averaged NMSE
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Demonstrates the performance of the DeepRec network for different numbers of
layers K.

o

© It can be observed that the averaged NMSE decreases dramatically as the
number of layers increases.

o

o

Such a result is also expected as each layer corresponds to one iteration of
originial optimization algorithm.

Thus, as the number of layers increases, the output of the network will converge
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Numerical Results: NMSE vs. Total Number of One-Bit Samples

DeepRec Performance with L=90 Layers

Averaged NMSE

50 100 150 200 250 300 350 400 450 500
Total Number of One-Bit Samples

@ Demonstrates the performance of the proposed DeepRec architecture and the
original Gradient Descent method in terms of averaged NMSE for different
numbers of one-bit samples M.

© It can be clearly seen that the proposed deep recovery architecture (DeepRec)
significantly outperforms the original optimization method in terms of accuracy
and provides a considerably better estimation than that of the gradient descent
method for the same number of iterations/layers.
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Numerical Results DeepRec Performance

Numerical Results: Execution Time vs. Total Number of One-Bit Samples

DeepRec Execution Time with L = 90 Layers

Execution Time (se
3
%

—s— DeepRec
— % —Gradient Descent Method
10

50 100 150 200 250 300 350 400 450 500
Total Number of One-Bit Samples

© Shows a comparison of the computational cost (machine runtime) between the
gradient descent method and the proposed DeepRec network for different
numbers of one-bit samples M.

@ It can be seen that our proposed method (DeepRec) has a significantly lower
computational cost compared with the original optimization algorithm.

© Hence, making it a good candidate for real-time signal processing applications.
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Numerical Results DeepRec Performance

@ We have considered the application of model-based deep learning, and
specifically the deep unfolding technique, in the problem of recovering a
high signal from its one-bit quantized noisy measurements via random
thresholding.

@ We proposed a novel deep architecture, which we refer to as DeepRec,
that was able to accurately perform the task of one-bit signal recovery.

@ Our numerical results show that the proposed DeepRec network
significantly improves the performance of traditional optimization
methods both in terms of accuracy and efficiency.
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Summary Concluding Remarks

Summary

@ We have considered the application of model-based deep learning, and
specifically the deep unfolding technique, in the problem of recovering a
high signal from its one-bit quantized noisy measurements via random
thresholding.

@ We proposed a novel deep architecture, which we refer to as DeepRec,
that was able to accurately and efficiently perform the task of one-bit
signal recovery.

@ Our numerical results show that the proposed DeepRec network
significantly improves the performance of traditional optimization
methods both in terms of accuracy and efficiency.
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Thanks!
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