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Introduction Analog-to-Digital Converters (ADCs)

Analog-to-Digital-Converters

Analog-to-digital converters (ADCs) are a key component in most of the
modern digital systems in that they are bridging the gap between the
analog world and digital systems.
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Introduction Analog-to-Digital Converters (ADCs)

Disadvantages of High-Resolution ADCs
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Full-precision ADC requires linear, low-noise amplifiers (LNA).
ADC power consumption grows exponentially with sampling rate: a
commercial Texas Instrument 1Gs/s 12-bit ADC requires 4W power
during operation.
With bandwidths on the order of a gigahertz in emerging wireless
systems, high-resolution analog-to-digital convertors (ADCs) become a
power consumption bottleneck.
Expensive and not practical for large systems with limited processing
power.
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Introduction Analog-to-Digital Converters (ADCs)

An Alternative: Low-Resolution Sampling using 1-bit ADCs
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One-Bit ADC⇒ simpler RF, no automatic gain control, or high cost
LNA.
Allows for very high sampling rates at a low cost.
Operates at a fraction of power in contrast to high resolution ADCs.
One can compensate for quantization error with advanced signal
processing techniques (the subject under investigation here)
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Introduction One-Bit Sampling

Signal Recovery from One-Bit Noisy Measurements

Question
Is it possible to accurately and efficiently recover a signal x ∈ Rn from its
one-bit noisy measurements r = sgn(x− τ )?

The answer is Yes– under some conditions!
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Introduction This Work

Signal Recovery from One-Bit Noisy Measurements

In this work, we propose a novel hybrid model-based and data-driven
approach enabling us to accurately recover a signal in the presence of noise
from its one-bit low-resolution samples.

1 The proposed method takes advantage of deep learning and data-driven
inference models while allowing us to provide domain knowledge to the
learning process (combining model-based and data-driven approaches).

2 This framework can be seen as a game changing marriage of classical
signal processing techniques and data-driven methods (e.g., machine
learning)⇒ best of both worlds!

3 Results in interpretable deep architectures.
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Introduction Machine Learning

Machine Learning vs. Model-Based Signal Processing

vs.

Machine/Deep Learning: data-driven, algorithm based, and are capable
of tuning to data, and benefits from fixed computational cost.

Statistical Signal Processing methods: model-based– once solved can be
used for all different problem instances.
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Introduction Machine Learning

Machine Learning and Model-Based Signal Processing

Machine learning, and more specifically deep learning, have shown
remarkable performance in sensing, communication, and inference during the
past decade. However, data-driven methods are ignorant to the underlying
domain knowledge of the problem (problem-level reasoning).

Model-based methods: problem domain knowledge can be built into the
model.

Deterministic deep neural networks: inference is straightforward but
their architecture are generic and it is unclear how to incorporate
knowledge.
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Introduction Machine Learning

Is there an intuitive way to combine the classical model-based statistical
signal processing methods with data-driven models?

Can we do model-based deep learning?

Yes.
But how?
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Introduction Machine Learning

Deep Unfolding Methodology
- Start with a model-based approach and an associated inference algorithm
and unfold the inference iterations as layers in a deep neural network.
- Furthermore, instead of optimizing the original model, the model parameters
are untied across layers, and hence, as to create a potentially more powerful
network.

The deep unfolding approach is a game-changing marriage of
model-based and data-driven methods in which well-thought iterative
signal processing or optimization algorithms can be unfolded into the
layers of a deep artificial neural network.

benefiting from the expressive power, low computational, complexity,
and data-driven nature of deep neural networks, and also from the
flexibility, versatility, and reliability of model-based methods.

Khobahi, Naimipour, Soltanalian, Eldar Deep One-Bit Signal Recovery ICASSP 2019 11 / 36



Introduction Our Goal

Goal
- We consider the general problem of signal recovery from random one-bit
measurements, and propose an efficient signal recovery framework based on
the deep unfolding technique.
- The proposed method has the advantage of low-complexity and near-optimal
performance compared to traditional methods.
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Problem Formulation Signal and Quantization Model

Problem Formulation

We begin by considering a general linear acquisition and one-bit quantization
model described as follows:

Data Acquisition Model
Signal Model:

y = Hx + n

Quantization Model:
r , sign(y− τ )

where τ = [τ1, . . . , τM]
T denotes the vector of one-bit quantization thresholds.

y ∈ RM denotes the received signal prior to quantization.
H ∈ RM×N denotes the sensing matrix.
x ∈ RN denotes the multidimensional unknown vector to be recovered.
n ∼ N (0,C) denotes the additive zero-mean Gaussian noise with a known
covariance matrix C = Diag(σ2

1 , . . . , σ
2
M).

sign(·) represents the signum function.
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Problem Formulation Maximum Likelihood Estimator

Maximum Likelihood Estimator Derivation

Our goal is to recover the original signal x from the one-bit random
measurements r, given the knowledge of the sensing matrix H, noise
covariance C, and the corresponding quantization threshold vector τ .

In this scenario, each binary observation {ri}N
i=1 follows a Bernoulli

distribution with parameter pi, given by:

pi = Prob{hT
i x + ni − τi > 0} = Q

(
τi − hT

i x
σi

)
.

where Q(x) = 1− φ(x) with φ(x) representing the cumulative
distribution function (CDF) of a standard Gaussian distribution, and hT

i
denotes the i-th row of the matrix H.
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Problem Formulation Maximum Likelihood Estimator

Maximum Likelihood Estimator Derivation

Hence, the probability mass function (pmf) of each binary observation
can be compactly expressed as:

p(ri) = Q
(

ri

σi

(
τi − hT

i x
))

,

And the corresponding log-likelihood function is given by

L(x) = p(r|x) = log

{ N∏∏∏
i=1

Q
(

ri

σi

(
τi − hT

i x
))}

=

N∑
i=1

log
{

Q
(

ri

σi

(
τi − hT

i x
))}

,
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Problem Formulation Maximum Likelihood Estimator

Maximum Likelihood Estimation and Optimality Condition

As a result the maximum likelihood estimation of the vector x can be obtained
as

Maximum Likelihood Estimation

x̂ = argmax
x
L(x).

Observe that the maximum likelihood estimator x̂ has to satisfy the
following optimality condition:

∇xL(x) = 0

Next, we derive the gradient of the log-likelihood function with respect
to the unknown vector x
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Problem Formulation Maximum Likelihood Estimator

Gradient of the log-likelihood function L(x)

The gradient of the log-likelihood function with respect to the unknown
vector x can be derived as follows:

∇xL(x) =
N∑

i=1

− ri

σi

Q′
(

ri
σi

(
τi − hT

i x
))

Q
(

ri
σi

(
τi − hT

i x
))
hi, (1)

where Q′(x) = − 1√
2π

exp
(
−x2/2

)
.

Further note that the gradient of the log-likelihood function is a linear
combination of the rows of the sensing matrix H.
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Problem Formulation Maximum Likelihood Estimator

Gradient of the log-likelihood function L(x)

Let η : RM 7→ R be a non-linear function defined as follows:

η(x) ,
Q′(x)
Q(x)

,

where the functions Q(·), Q′(·), and the division, are applied
element-wise on the vector argument x.

In addition, let
Ω = Diag(r1, . . . , rM)

be a diagonal matrix containing the one-bit observations. Then,

Ω̃ = ΩC−
1
2

represents the semi-whitened version of the one-bit matrix Ω.
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Problem Formulation Maximum Likelihood Estimator

Gradient of the log-likelihood function L(x)

Using the previous described definitions, the gradient of the log-likelihood
function can be compactly written as

∇xL(x) =
N∑

i=1

− ri

σi

Q′
(

ri
σi

(
τi − hT

i x
))

Q
(

ri
σi

(
τi − hT

i x
))
hi (2)

= HTΩ̃η
(
Ω̃(τ −Hx)

)
(3)

Recall that the maximum likelihood estimator x̂ must satisfy the
condition:

∇xL(x) = −HTΩ̃η
(
Ω̃(τ −Hx)

)
= 0 (4)

Other than certain low-dimensional cases, finding a closed-form
expression for x̂ that satisfies (4) is a difficult task⇒ Not practical, use
iterative methods instead.
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Problem Formulation Model-Based Deep Learning

First-Order Methods

Alternatively, one can employ the well-known gradient ascent method to
iteratively solve the maximum likelihood estimation problem.

Namely, given an initial point x(0), the update equation at each iteration
to solve the ML estimation problem is given by:

x(k+1) = x(k) + δ(k)∇xL(x) (5)

= x(k) − δ(k)HTΩ̃η
(
Ω̃(τ −Hx(k))

)
(6)

where δ(k) is the step size at the k-th iteration.

The iteration in (6) can be used as a baseline to design a deep architecture
where each layer resembles one iteration of the optimization iteration.
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Problem Formulation Model-Based Deep Learning

Another Perspective: Deep Neural Networks

Analyzing the gradient steps in (6) reveals that the output of each
iteration is a function of linear combination of the previous output
followed by a non-linear function, i.e., let

z(k) = η
(
Ω̃(τ −Hx(k))

)
(7)

= η︸︷︷︸
non-linear function

 −Ω̃Hx(k) + Ω̃τ︸ ︷︷ ︸
linear combination of x(k)

 . (8)

Therefore:

x(k+1) = [I − δ(k)HTΩ̃]

[
x(k)

z(k)

]
. (9)

On the other hand, a deep neural network can be similarly interpreted as
a linear combination of the output of each layer, followed by some
non-linear (or linear) function, multiple times!
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Problem Formulation Model-Based Deep Learning

From iterative algorithms to deep architectures

Hence, by carefully designing the architecture of a K-layer neural
network and the corresponding weights and non-linear functions of each
layer, it can be interpreted as performing K-iterations of an iterative
algorithm.

Namely, via unfolding such iterations onto the layers of a deep network,
one can fix the complexity of the inference algorithm (feed-forward for
K-layers), while benefiting from the expressive power of a deep neural
network.
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Problem Formulation DeepRec

DeepRec Architecture

Now, we propose the Deep Recovery (DeepRec) deep architecture, tailored
for tackling the problem of signal recovery from one-bit noisy measurements.

Khobahi, Naimipour, Soltanalian, Eldar Deep One-Bit Signal Recovery ICASSP 2019 23 / 36



Problem Formulation DeepRec

DeepRec Architecture

The k-th layer of DeepRec can be characterized via the following operations
and variables:

z(k) = W1kΩ̃τ −W2kHx(k) + b1k, (10)

p(k) = η
(

z(k)
)
, (11)

t(k) = HTΩ̃ p(k), (12)

x(k+1) = f
(

W3k

[
x(k)

t(k)

]
+ b2k

)
, (13)

where x(1) = 0, f (·) denotes a linear or non-linear activation function (e.g.,
ReLU), and the goal is to optimize the DNN parameters, described as follows:

Ξ = {W1k,W2k,W3k, b1k, b2k}K
k=1. (14)
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Problem Formulation DeepRec

DeepRec Architecture

Note that we over-parametrize the iterations using the weight and bias
vectors, which results in iterations with much higher expressive power,
which this over-parametrization must be compensated for by a longer
training time.

Good News: we can generate a dataset with arbitrary size! Because we
know the statistics of the underlying system variables (e.g., noise model,
channel model).

Furthermore, the network can be trained for a wide range of system
uncertainties (noise and sensing matrix model), to make it more resilient
to such uncertainties⇒ not directly possible in classical signal
processing methods!
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Problem Formulation DeepRec

The proposed DeepRec architecture with L layers can be seen as a class
of estimator functions

ΨΞ(r,H, τ )

parametrized by Ξ = {W1k,W2k,W3k, b1k, b2k}L
k=1, to estimate the

unknown vector x, from its one-bit noisy measurements r.

In order to find the best estimator function ΨΞ(r,H, τ ) associated with
our problem, we conduct a learning process via minimizing a loss
functionR(x;ΨΞ(r,H, τ )), i.e.,

min
Ξ

R(x;ΨΞ(r,H, τ )) (15)

In this work , we employ the following least squares (LS) loss function:

R (x;ΨΞ(r,H, τ )) = ||x−ΨΞ(r,H, τ )||22 (16)

where during the training phase, we synthetically generate the system
parameters Θ = {x, r,H, τ} according to their statistical model.

Khobahi, Naimipour, Soltanalian, Eldar Deep One-Bit Signal Recovery ICASSP 2019 26 / 36



Numerical Results System Setup

Numerical Results: System Setup

The proposed DeepRec framework is implemented using TensorFlow
Library, with ADAM stochastic optimizer, and an exponential decaying
step size.

In the learning process, we employed the batch training method with a
batch size of 500 at each epoch, and for a total of 2000 epochs.

We use the normalized mean squared error (NMSE) defined as

NMSE =
‖x− x̂‖2

2

‖x‖2
2

for the performance metric.
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Numerical Results System Setup

Numerical Results: Data Generation

Data Generation: The training was performed based on the data
generated via the following model.

Each element of the vector x is assumed to be i.i.d and uniformly
distributed, i.e., x ∼ U(δx

l , δ
x
u).

The sensing matrix is assumed to be fixed and follow a Normal
distribution, where we consider H ∼ N (0, I).
The quantization thresholds were also generated from a uniform
distribution, τ ∼ U(δτl , δτu ) (we assume the quantization threshold is
generated once, and is fixed)
The noise is assumed to be independent from one sample to another and
follows a Normal distribution, where the variance of each corresponding
noise element is different, e.g., the noise covariance
C = Diag(σ2

1 , . . . , σ
2
M), with σ2

i ∼ U(δn
l , δ

n
u ).

Note that we trained the network over a wide range of noise powers in
order to make the DeepRec network more robust to noise.
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Numerical Results DeepRec Performance

Numerical Results: NMSE vs. Number of Layers
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For this figure, we used the following cost function:
L∑

k=1

‖x− x(k)‖2
2

where x(k) denotes the output of the k-th layer.
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Numerical Results DeepRec Performance

Numerical Results: NMSE vs. Number of Layers
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Such a loss function allows you to use the output of k-th layer as the best
estimation you have after k-layers⇒ allows for controlling the
complexity of the inference model; you may only want to feed-forward
for 10 layers and still have an accurate estimation.
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Numerical Results DeepRec Performance

Numerical Results: NMSE vs. Number of Layers
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1 Demonstrates the performance of the DeepRec network for different numbers of
layers K.

2 It can be observed that the averaged NMSE decreases dramatically as the
number of layers increases.

3 Such a result is also expected as each layer corresponds to one iteration of
originial optimization algorithm.

4 Thus, as the number of layers increases, the output of the network will converge
to a better estimation as well.

5 Indeed, after 20-layers, the network converges to a very good estimator.
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Numerical Results DeepRec Performance

Numerical Results: NMSE vs. Total Number of One-Bit Samples
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100

1 Demonstrates the performance of the proposed DeepRec architecture and the
original Gradient Descent method in terms of averaged NMSE for different
numbers of one-bit samples M.

2 It can be clearly seen that the proposed deep recovery architecture (DeepRec)
significantly outperforms the original optimization method in terms of accuracy
and provides a considerably better estimation than that of the gradient descent
method for the same number of iterations/layers.
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Numerical Results DeepRec Performance

Numerical Results: Execution Time vs. Total Number of One-Bit Samples
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1 Shows a comparison of the computational cost (machine runtime) between the
gradient descent method and the proposed DeepRec network for different
numbers of one-bit samples M.

2 It can be seen that our proposed method (DeepRec) has a significantly lower
computational cost compared with the original optimization algorithm.

3 Hence, making it a good candidate for real-time signal processing applications.
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We have considered the application of model-based deep learning, and
specifically the deep unfolding technique, in the problem of recovering a
high signal from its one-bit quantized noisy measurements via random
thresholding.

We proposed a novel deep architecture, which we refer to as DeepRec,
that was able to accurately perform the task of one-bit signal recovery.

Our numerical results show that the proposed DeepRec network
significantly improves the performance of traditional optimization
methods both in terms of accuracy and efficiency.
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Summary

We have considered the application of model-based deep learning, and
specifically the deep unfolding technique, in the problem of recovering a
high signal from its one-bit quantized noisy measurements via random
thresholding.

We proposed a novel deep architecture, which we refer to as DeepRec,
that was able to accurately and efficiently perform the task of one-bit
signal recovery.

Our numerical results show that the proposed DeepRec network
significantly improves the performance of traditional optimization
methods both in terms of accuracy and efficiency.
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Thanks!
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