EDUQA : EDUCATIONAL DOMAIN QUESTION ANSWERING SYSTEM USING CONCEPTUAL NETWORK MAPPING

*A Agarwal^, *N Sachdeva^, *R K Yadav^, * V Mittal^, *V Udandarao^, A Gupta^, A Mathur^^

^SBILab, Department of ECE, IIIT-Delhi, India, ^^ Million Sparks Foundation

INTRODUCTION

- Problem : QA system for the K-12
 Education system
- Proposed Solution: EDUQA : Framework to extract meaningful answers using -Concept Network - context information encoded into a network of evolving entities

BACKGROUND

Question Answering Models are of 2 types:

- Open Domain: Eg. DrQA*, etc
- Closed Domain: Eg BiDAF**, QuASE*** etc

*D. Chen, A. Fisch, J. Weston, and A. Bordes. E et al, **M. Seo, A. Kembhavi, A. Farhadi, et al, ***H. Sun, H. Ma, W.-t. Yih, C.-T. Tsai, J. Liu, and M.-W. Chang, et al

BACKGROUND

Drawbacks :

- **Open Domain**: variation in level of understanding, factoid based
- Closed Domain: factoid based, rote learning, not good enough as standalones *

* T. Atapattu, K. Falkner, and N. Falkner et al,

BACKGROUND

Other drawbacks of various question answering models:

- Answer retrieval using rote learning
- Inability to capture semantic correlations within question
- Support mostly for factoid type questions
- Not resourceful for answering student queries

PROPOSED FRAMEWORK:

EDUQA: EDUCATIONAL DOMAIN QUESTION-ANSWERING SYSTEM

Dynamic Concept Network(DCN) Module

ENTITY (NODES) AND RELATION (EDGE)

ON THE FLY LEARNING

Question Analysis (QuAn) Module

- Entity Extraction Module -Tokenization + Longest Prefix
 Sequence matching (LPSM)
- Eg :Question: "What is non contact force"

Tokenization: "What", "is", "non", "contact", "force"

Subset of Entity list: "non contact force", "contact force", "force"

LPSM : "non contact force"

 Attribute Recognition - similarity measure of entity attributes and input question *

 $Sim_{overall} = (1 - \delta)Sim_{statistic} + \delta Sim_{semantic}$

 Relationship Extraction - more than one entity in the question

RESULTS

Table 3: Comparison of EDUOA with other models			
Sample Question	EDUQA	BiDAF [6]	START [4]
What is Force?	✓	Λ	Λ
What is change in state of motion?	~	×	—
Give examples of Non-Contact Force.	✓	X	✓
What brings change in state of motion?	#	×	—
What happens to pressure when force increases?	~	×	—
Differentiate between contact and non- contact force.	~	Λ	×
What happens when two forces act in the same direction?	#	~	_
 Correct Answer X Wrong Answer No Answer # Expert's Answer Λ Partially Correct 			

CONCLUSION

- Explored Question Answering –
 Education
- Analysis of existing frameworks and their shortcomings in educational context
- Proposed framework based on dynamic self - evolving concept network (built specific to a topic)

FUTURE WORK

- Use better answer retrieval strategies
- Incorporating complex courses like Mathematics
- automate concept network construction
- minimize requirement of human expert at back end
- support for complex reasoning questions

REFERENCES

- D. Chen et. al., "Reading wikipedia to answer open-domain questions,".
- D. Braun et. al.,"Evaluating natural language understanding services for conversational question answering systems,".
- I. Abbes et. al., "Towards opendomain crosslanguage question answering,".
- B. Katz et. al., "Omnibase: Uniform access to heterogeneous data for question answering,".
- D. Diefenbach et. al., "Core techniques of question answering systems over knowledge bases: a survey,".
- M. Seo et. al., "Bidirectional attention flow for machine comprehension,".

REFERENCES

- H. Sun et. al., "Open domain question answering via semantic enrichment,".
- S. Min et. al., "Efficient and robust question answering from minimal context over documents,".
- J. Yu et. al., "Modelling domain relationships for transfer learning on retrieval-based question answering systems in e-commerce,".
- T. Atapattu et. al., "Educational question answering motivated by question-specific concept maps,".
- A. Abdi et. al., "Qapd: an ontology based question answering system in the physics domain,".
- W. Song et. al., "Question similarity calculation for faq answering,".
- G. A. Miller et. al., "Wordnet: a lexical database for english,".

THANK YOU !

