SAGE Incremental Binarization on Recurrent Neural Networks For Single-Channel Source Separation
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INTRODUCTION PROPOSED MODEL
We propose a Bitwise Gated Recurrent Unit (BGRU) network for the| |o BGRU Cell o Feedforward: real-valued weights are incrementally binarized by
single-channel source separation task that mitigates the computation scaled sparsity and Bernoulli masks.

required by Recurrent Neural Networks. By re-defining the originally real- o Example of candidate state:

valued inputs and outputs, pretrained weights, and operations in a WO = (WD) oB)oC+ oW o1 - )

bitwise fashion, we reduce the computational and spatial complexity of ~) () )

Uy = (6(UY)oB)© C+6(UY) @ (1 - C)
the GRU network. To address the heavy quantization loss from the _ . _
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transformation, we take an incremental approach to binarization.

QUANTIZATION

o Input STFT magnitude bins are quantized into 4 binary bits using

o Backpropagation: Derivatives of non-differentiable activation functions

are overwritten with that of relaxed counterparts
Quantization-and-Dispersion

o Example of candidate state:
vwi = vwl’ o BoC+(1-0))

vul =vulP o BeC+(1-0C))

EXPERIMENTAL RESULTS

16 | 1st Round SDR: 16.12/dB 161 1st Round SDR: 16.12|dB
14 1 m 14 - R R
m A A A B raah A B
Vg in A
12 : 121
. . . o' o'
o Pretrained weights are transformed and scaled with a relaxed O o
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quantization on a boundary determined by a specified sparsity level
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o Binary versions of the logistic and hyperbolic tangent activations FCN with original input | . o . 10'57 0.8060 - _ - _
: : o Training is done in two rounds, first in a weight compressed network
FCN with binary input | L024%2 | 9.80°0.7790
100/ 1.00f Y 2048x2 | 10.11 | 0.7946 then in an incrementally bitwise version with the same topology
0.751 0.751 1024 <2 9.35 0.7819 o _ o _ _
. o BNN 2048x2 | 9.82 | 0.7861 o Due to the sensitivity in training the BGRU network, the bitwise
1 i i i . .
025 o (z) = Sg”(ZH e {0,1} o2 GRU with binary input | 1024x1 | 16.12 | 0.9459 feedforward pass is performed gently using two types of masks that
oo " 7=0.1 15.50 | 0.9393
s 2P e 2" m=0.2 15.17 | 0.9361 determine the level of sparsity and rate of binarization.
m=0.3 14.90 | 0.9324
1.0° 1.0° =0.4 14.58 | 0.9292
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