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Introduction
• Immediate and accurate detection of wildfire is essentially important in forest monitoring systems

• One of the most harmful hazards in rural areas

• For wildfire detection, the use of visible-range video captured by surveillance cameras are suitable
• They can be deployed and operated in a cost-effective manner [1]

• The challenge is to provide a robust detection system with negligible false positive rates

• If the flames are visible, they can be detected by analyzing the motion and color clues of a video [2]
• Modeling various spatio-temporal features and dynamic texture analysis have been shown to be able to 

detect fire as well [3]

1. A. E. Çetin, K. Dimitropoulos, B. Gouverneur, N. Grammalidis, O. Gunay, Y. H. Habibolu, B. U. Töreyin, and S. Verstockt, “Video fire detection–review,” Digital Signal 
Processing, vol. 23, no. 6, pp. 1827–1843, 2013.
2. Y. Dedeoglu, B. U. Toreyin, U. Güdükbay, and A. E. Cetin, “Real-time fire and flame detection in video,” in Proceedings of the IEEE International Conference on Acoustics, 
Speech, and Signal Processing. IEEE, 2005, vol. 2 of ICASSO’05, pp. ii–669 
3. K. Dimitropoulos, P. Barmpoutis, and N. Grammalidis, “Spatio-temporal flame modeling and dynamic texture analysis for automatic video-based fire detection,” IEEE 
Transactions on Circuits and Systems for Video Technology, vol. 25, no. 2, pp. 339–351, 2015.
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Introduction
• Focus on smoke detection

• Smoke rises above the crowns of trees, and it has a higher chance of falling into the viewing range of cameras

• Particularly challenging because of false alarms due to cloud shadows and fog [4]

• Deep Convolutional Generative Adversarial Networks (DCGANs) [5] based wildfire smoke detection
• DCGANs can learn representations of regular wilderness images in an unsupervised manner

4. Y. Zhao, J. Ma, X. Li, and J. Zhang, “Saliency detection and deep learning-based wildfire identification in UAV imagery,” Sensors, vol. 18, no. 3, pp. Article No. 712, 19 
pages, 2012.
5. A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial networks,” CoRR, vol. abs/1511.06434, 2015
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Introduction
• The contributions  are,

• Using discriminator network of the DCGAN as a classifier that distinguishes ordinary image sequences 
without smoke from wildfire smoke

• A two-stage training approach for a DCGAN
• Unsupervised representation learning in combination with supervised classification learning

• Exploiting the wildfire smoke’s evolution in time
• Temporal progress of smoke is integrated by using a motion-based image transformation before training
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Method
• Method is based on a DCGAN structure accepting images with size 256×256 px

• Seven transposed convolutional layers for the generator, and seven convolutional layers for the 
discriminator

• In the first stage, we train DCGAN using images without smoke and noise distribution 𝑧
• Discriminator network learns a representation for ordinary wilderness video scenes and distinguishes smoke

• Then, we refine and retrain the discriminator without generator network in the second stage
• regular video images obtained from the cameras constitute the “real” training data 

• actual smoke images correspond to generated data

• Adversarial training makes the recognition system more robust and the second stage of training 
increases the recognition accuracy
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Method

The architecture of DCGAN: (a) generator network, (b) discriminator network, (c) the first stage of 
training, and (d) the second stage of training.
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Method
• Instance normalization [6] in the discriminator network, and batch normalization [7] in the generator 

network

• “MSRA” initialization [8] to initialize the layers and dropout layers [9]

• Adam optimizer for stochastic optimization [10]

• Algorithms are supported by TensorFlow [11]

6. D. Ulyanov, A. Vedaldi, and V. S. Lempitsky, “Instance normalization: The missing ingredient for fast stylization,” CoRR, vol. abs/1607.08022, 2016..
7. S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” CoRR, vol. abs/1502.03167, 2015
8. K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification,” in Proceedings of the IEEE 
International Conference on Computer Vision, 2015, ICCV’15, pp. 1026–1034
9. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” The Journal of Machine 
Learning Research, vol. 15, no. 1, pp. 1929– 1958, 2014
10. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR, vol. abs/1412.6980, 20147
11. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al., “Tensorflow: a system for large-scale machine learning,” in 
Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, 2016, OSDI’16, pp. 265–283
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Method
• Transformations to the frames as a pre-processing step

• Exploiting the temporal behavior of smoke

• Estimated motion is computed using Farnebacks algorithm [12], then a geometrical transformation is 
applied as follows

• where,

• 𝑇(𝑘, 𝑙) is the pixel at position (𝑘, 𝑙) in the resulting transformed image

• 𝑆(𝑘, 𝑙) is the pixel at position (𝑘, 𝑙) in the source image

• 𝑓𝑘(𝑘, 𝑙) is the estimated motion along horizontal axis at position (𝑘, 𝑙)

• 𝑓𝑙(𝑘, 𝑙) is the estimated motion along vertical axis at position (𝑘, 𝑙)

12. G. Farneback, “Two-frame motion estimation based ¨ on polynomial expansion,” in Proceedings of the 13th Scandinavian Conference on Image Analysis, Berlin, 
Heidelberg, 2003, SCIA’03, pp. 363–370, SpringerVerlag
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Method

Examples of transformed frames.
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Method
• Wildfire smoke has no particular shape, therefore we treat smoke as an unusual event or an anomaly

• In standard GAN training, the discriminator D is updated using the stochastic gradient

• where, 

• 𝑥𝑖 and 𝑧𝑖 are the 𝑖-th regular image data and noise vector, respectively

• 𝐺 represents the generator that generates a “fake” image according to the input noise vector 𝑧𝑖
• the vector θ𝑑 contains the parameters of the discriminator

• Generator network 𝐺 is “adversarially” trained
• Smoke videos are not included in this stage
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Method
• This GAN is able to detect smoke, because smoke images are not in the training set

• To increase the recognition accuracy, we perform a second round of training by fine-tuning the 
discriminator using the stochastic gradient

• where 𝑦𝑖 represents the 𝑖-th image containing wildfire smoke

• Number of smoke image samples, 𝐿, is much smaller than the size of the initial training set, 𝑀, 
containing regular forest and wilderness images

• Generator network of GAN is not used in this stage
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Experimental Results
• 40 video clips containing no smoke frames and 29 video clips containing only smoke frames

• For each smoke video, there is a corresponding “normal” video for generator network to learn
• However, not all normal videos have a corresponding smoke video

• We first apply motion-based geometrical image transformation and normalize the duration of  videos

• Data is split the into training, validation, and test sets with a ratio of 3:1:1
• Some smoke videos are completely removed from validation and training sets

• However, all normal videos are included in the training set
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Experimental Results
Method TNR

(%)

TPR

(%)

Our method 99.45 86.23

Transformation excluded 98.70 83.33

Refinement excluded 95.10 62.56

Transformation and 

refinement excluded
93.94 60.16

Adversarial training 

excluded
98.07 84.10

Adversarial training and 

transformation excluded
97.39 81.43

Obtained true negative rate (TNR) and true positive rate 
(TPR) values on test set for frame-based evaluation.

• We first evaluate the proposed method in terms of 
frame-based results

• We compare our model by excluding the 
contributions one by one

• Our approach targets at reducing the false positive 
rate, while keeping the hit-rate as high as possible

• Best results on the test set
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Experimental Results
Method TNR

(%)

TPR

(%)

Our method 99.45 86.23

Transformation excluded 98.70 83.33

Refinement excluded 95.10 62.56

Transformation and 

refinement excluded
93.94 60.16

Adversarial training 

excluded
98.07 84.10

Adversarial training and 

transformation excluded
97.39 81.43

Obtained true negative rate (TNR) and true positive rate 
(TPR) values on test set for frame-based evaluation.

• For the motion-based transformation, the 
difference is mainly in hit-rates

• Without the refinement stage, detection rates are 
smaller 
• However it can still be useful when there are no 

labeled smoke frames

• Without adversarial training, the model is more 
susceptible to false positives
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Experimental Results

Examples of frame-based classification results. Red border indicates that smoke is detected in that frame.
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Experimental Results
• We also evaluate the approach in terms of video-based results

• A video is classified as a smoke video, if, at least, one frame is detected as smoke

• We train different versions of the network, by up-weighting and down-weighting the cost of a false 
positive relative to a false negative

• False-positive rate of 2.5% is achieved corresponding to a 6.9% miss rate

Video-based results for our method.

TNR

(%)

TPR

(%)

Up-weighted false positives 100.00 89.67

Unweighted 97.50 93.10

Down-weighted false positives 87.50 100.00
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Conclusion
• A wildfire smoke detection method using DCGANs and motion-based geometrical image transformation

• Treating smoke as an unusual event

• Two-stage DCGAN training approach

• Spatio-temporal dynamics of smoke are acquired using motion-based geometric image transformation

• Results suggest that the proposed method achieves low false alarm rates while keeping the detection 
rate high
• It can also be utilized to detect other anomalous events in forests, such as, flames or people in restricted 

zones
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