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Introduction

•Optimum beamforming in full-duplex communications can be solved with the semidefinite relax-
ation (SDR) approach whose computational complexity increases rapidly with the problem size.

• To reduce complexity, an alternating direction of multiplier method (ADMM) which minimizes
the augmented Lagrangian of the dual of the SDR and handles the inequality constraints with the
slack variables is proposed.

• The proposed ADMM is applied for optimizing relay beamformer to maximize the secrecy rate.

• Simulation results show that the proposed ADMM perfoms as good as the SDR approach.

Proposed ADMM

• Consider the following SDP problem in its standard form

min
X≽0

tr(CX)

s.t. Ā(X) = b̄, (1)

B̄(X) ≥ d̄.

min
X≽0,{ui≥0}qi=1

tr(CX)

s.t. Ā(X) = b̄, (2)

B̄(X)− u = d̄.

•Here, {C,X} ∈ Cn×n, b̄ ∈ Rm×1, d̄ ∈ Rq×1, Ā(X) = [tr(A1X), · · · , tr(AmX)]T , and B̄(X) =[
tr(B1X), · · · tr(BqX)

]T
. u = [u1, · · · , uq]T is a vector of positive slack variables.

• The Lagrangian multiplier function for (2) is expressed as

L(ȳ,v,λ,S) = tr ((C +A∗(ȳ) + B∗(v)− S)X)− ȳT b̄− vT d̄− (v + λ)Tu, (3)

where S ≽ 0, λ ≥ 0, ȳ ∈ Rm×1 and v ∈ Rq×1 are the dual variables, A∗(ȳ) =
∑m

i=1 ȳiAi and

B∗(v) =
∑q

i=1 viBi with ȳ , [ȳ1, · · · , ȳm]T and v , [v1, · · · , vq]T .
• The optimal dual and primal variables are obtained frommax{ȳ,v,λ}min{X,u}L(ȳ,v,λ,S), where
min{X,u}L(ȳ,v,λ,S) is given by

min
{u}

−ȳT b̄− vT d̄− (v + λ)Tu, s.t. C +A∗(ȳ) + B∗(v)− S = 0. (4)

• For given v and λ, the optimum u is given by u = max(0,v + λ). Substituting this u into (4),
the resulting outer maximization is

min
{ȳ,v,λ,S≽0}

ȳT b̄ + vT d̄ + (v + λ)T max(0,v + λ)

s.t. C +A∗(ȳ) + B∗(v)− S = 0. (5)

• Clearly, λ = 0 is optimum. Define b , [b̄T , d̄T ]T , y , [ȳT ,vT ]T , A(X) , [ĀT (X), B̄T (X)]T ,
and A∗(y) , A∗(ȳ) + B∗(v). Then, (5) can be expressed as

min
{y,S≽0}

yTb + yTPmy, s.t. C +A∗(y)− S = 0, (6)

• The augmented Lagrangian is

Lµ(X,y,S)=yTb + yTPmy + tr ((C +A∗(y)− S)X) +
1

2µ
||C +A∗(y)− S||2. (7)

In ADMM, minX,y,S≽0Lµ (X,y,S) is solved.

Proposed ADMM

• Starting with some X(k) and S(k), the ADDM includes three sub-problems

y(k+1)=argminyLµ

(
X(k),y,S(k)

)
, (8)

S(k+1)=argminS≽0Lµ

(
X(k),y(k+1),S

)
, (9)

X(k+1)=X(k) +
1

2µ

[
C +A∗(y(k+1)− S(k+1)

]
. (10)

Proposed Method (Contd.)

Let us assume B1 , Am+1, · · ·Bq , Am+q define

Ā =


tr(A1A

H
1 ) · · · Re

(
tr(AmAH

1 )
)

... ... ...

Re
(
tr(A1A

H
m+q)

)
· · · tr(Am+qA

H
m+q)

 .

For a given S(k) and X(k), the solution of minyLµ

(
X(k),y,S(k)

)
is

y(k+1) = (Ā + 2µPm)−1
{
−AR

(
(C− S(k))H

)
+ µ

(
−b−A(X(k))

)}
, where

AR

(
(C− S(k))H

)
=


Re

(
tr(A1

(
C− S(k))H

))
...

Re
(
tr(Am+q

(
C− S(k))H

))
 . (11)

• For given X(k) and y(k+1), the solution of minS≽0Lµ

(
X(k),y(k+1),S

)
is

S(k+1) = QΛ+
V(k+1)Q

H (12)

where Λ+
V(k+1) is the diagonal matrix of positive eigenvalues of

V(k+1) = X(k) +
1

2µ

(
C +A∗(y(k+1))

)H
, (13)

and Q is the corresponding matrix of eigenvectors.

• 1) Initialize X(k) and S(k), the maximum number of iterations (Nit) and/or convergence accu-
racy ϵ, and µ.

• 2) Obtain y(k+1) from (11).

• 3) Obtain S(k+1) from (12) and (13).

• 4) Update X(k+1) using (10)

• 5) Update µ

• 6) If {y(k+1)i = 0}m+q
i=m+1, set ith row of P̄m to all-zeros.

• 7) Go to step 2 until convergence.

• Stopping criterion: The algorithm converges if max(r
(k)
prim, r

(k)
dual) ≤ ϵ, where r

(k)
prim = ||A(X(k))−

b|| and r
(k)
dual = ||C +A∗(y(k+1)− S(k+1)|| are the residuals. The update process for µ is

µ(k+1) =

{ τuµ(k) if r
(k)
prim > ρr

(k)
dual,

µ(k)

τ d
if r

(k)
dual > ρr

(k)
prim,

µ(k) otherwise,

(14)

where we choose ρ = 10 and τu = τd = 2.

Application to Physical Layer Security:

• The secrecy rate is maximized, which is

R = log2

{(
1 + min

{
ρ1h

H
sr(ρ2Hrrwtw

H
t HH

rr + I)−1hsr, ρ3|hTrdwt|2
})

−

1

2
log2

(
c2 +wH

t B̃wt

)}
,

•Here, c = 1 + ρ4|hse|2, B̃ = ρ5h
∗
reh

T
re, ρ1 =

Ps

σ2
r
, ρ2 =

Pr

σ2
r
, ρ3 =

Pr

σ2
d
, ρ4 =

Ps

σ2
e
, and ρ5 =

Pr

σ2
e
.

• For a given t, using q(t) , ||hsr||2
ρ2

− 1
ρ1ρ2

(t− 1), and relaxing Wt , wtw
H
t to Wt ≽ wtw

H
t

min
Wt

tr
(
Wth

∗
reh

T
re

)
, (15a)

s.t. tr
(
WtH

H
rr

[
ρ2q(t)I− hsrh

H
sr

]
Hrr

)
≥ −q(t), (15b)

(t− 1)

ρ3
≤ tr

(
Wth

∗
rdh

T
rd

)
, tr(Wt) = 1, Wt ≽ 0, (15c)

•Hence, for the ADMM algorithm

X = Wt, C = h∗reh
T
re, A1 = I,A∗(ȳ) = ȳ1I, b̄ = [1],

B1 = HH
rr

[
ρ2q(t)I− hsrh

H
sr

]
Hrr, B2 = h∗rdh

T
rd,

B∗(v) = v1H
H
rr

[
ρ2q(t)I− hsrh

H
sr

]
Hrr + v2h

∗
rdh

T
rd,

d̄ =

[
−q(t),

t− 1

ρ3

]T
. (16)

•A line-search w.r.t. t is then performed to solve the joint optimization.

Numerical Results

• In all simulations of ADMM, we set M = 8, ρ = 10, τu = τd = 2, Nit = 2000, ϵ = 5× 10−3, and
initial value of µ to 10.The S− R, R− D, R− E, and S− E channel distances are set to 40m, 40m,
50m, and 200m, respectively.

•We set σ2r = σ2d = σ2e to −80 dBm, the pathloss exponent to 3, the variance of the residual
loop-interference to 30 dBm, and choose and Ps = Pr.
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Dual residue
Primal residue

• For all values ofMt, the performance of the proposed ADMM is similar to that of the SDR method.

•We take Mt = 6, ϵ = 5 × 10−3, and Ps = 0 dBm for convergence. As the number of iterations
increase, both primal and dual residues converge to a value less than 5 × 10−3 in about 200
iterations.

Conclusions
•We proposed ADMM that minimizes the augmented Lagrangian function of the dual of the SDR
and handles inequality constraints through slack variables.

• The algorithm is then applied to optimize full-duplex relay beamforming, whereein the objective
is to maximize the secrecy rate.

• Simulation results show that the proposed ADMM provides performance similar to that of the
standard SDR method.


