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Introduction Unsupervised online segmentation Results
e Motivation: e Bayesian Information criterion (BIC) [2] based unsupervised online e True segmentation instances S, are the segmentation instances which
o Significant development in generic video based human motion segmentation algorithm 1s used. lie 1n a segmentation zone around the ground truth segmentation
tracking with Openpose allows us to use this as preprocessing tool to e At time point i, Generalized likelihood ratio (GLR) between feature matrix of points Sg;.
extract 2D hand keypoints from the video. left (W) and right (/) window of i 1s computed. e Segmentation accuracy 1s defined as the number of frames which are
o It al.so te.lkes care of the privacies of the scene. ASIVR — Lo b ap—\ - A - d(d+ 1) e grouped correctly to the total number of frames.
¢ Contribution: 1 e 2 2 . e To take into consideration the early and late segmentation, S is
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o Graph representation of hand skeleton data 1s introduced. | | | o | | | computed using following equation, where L is the length of the
o A new fine complex motor activity hand dataset of an assembling Here, X 1s the covariance matrix, d 1s the feature dimension, N 1s the length of the sequence.

task 1s introduced and made public for research community. data sequence, and A controls the number of segments. e S -]
o Unsupervised temporal segmentation of a sequence of complex e ABIC.=s 0 decides i 1s a good segmentation instant or not. S; = (1- Z bi &l ai)XlOO

sub-tasks using 1s proposed in order to evaluate the efficiency of an e If iisnotasegmentation instant, we combine W, and IV , and go to i+/ to i=1 L

assembly task. check with the next window. e In this scenario, as only 2D position data of hand keypoints is

. accessible, we have very limited information about the scene, thus
Prﬂposed hand graph features Experlmental setup and dataset using the motion vectors as features in baseline evaluation.

e Symmetric graph laplacian L is defineas L = — D~1/24p~1/2 e Graph Gz outperformed other graphs and baseline method.

where 4 and D represent adjacency matrix, degree matrix respectively.
e Spectral basis of the graph U1, U2, ..., Un,,: Eigen vectors of L, leading
to the columns of matrix U.

Average SegAcc=84.82
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e Spectral frequencies [3] are the corresponding eigen values. s9 i3 '
e Graph signal 1s represented as linear combination of Uk . S8
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® (;:the motion vector present in each node of hand, @ ;: graph fourier 3 1
coefficients, a unique representation of the motion vectors, used as ..
graph features. s1 i
gf]—f : Hand graph ngf]—[ . Finger Connected hand graph 0 2000 4000 GOOgampleEOOO 10000 12000 14000
s, /, .//*’7\7\ o A toy assembling task with three subtasks: Fig 4. Segmentation outcome using features from graphs,
A 7 & T \ A - T | Assembling (involves use of screws), transition 1n color represents change 1n action
\\ q / Ay \\ \ / | / / C.ombmmg (qulves use of wires and Table 1. Summarized results ( %)
w ./ g o pins) and C.h.eckmg. | Method | Precision| Recall | Fl-score | SegAcc \Y,
il " e No. of participants : 11, each performing
Gr®r3c - Left-Right hand graph the task 3 times. Baseline | 25.1 33.3 222 | 71.58 16.4
) ® Gr4.1s constructed in order to e Total no. of data sequences : 33.
account for relative motion of the e Openpose, used as a preprocessing tool to Proposed 54.3 85.7 64.1 84.8 59.6
tips of the fingers. - - extract 2D position of 2X21 hand
® G, s can capture the relative . E ‘ keypoints from the video at fps 30.
motion between two hands along e 2D motion vectors from the position data Future work

' ntra- ‘ = = is computed as it captures all the — : — )
with the intra-hand motion. p— ) S5 b - cab . e (Qualitative analysis of the performance of the participants in the
. 1 i - o fundamental variation present in each .
Fig 1. Proposed hand graphs sub-tasks context of segmentation.

(Fixed, undirected, unweighted) Fig 3. Participant performing the task e Explore the choice of weighted hand graphs.
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