

Objectives

This model-driven steganographic scheme is inspired by MG (multivariate Gaussian model)[4] and MiPOD (minimizing the power of optimal detector)[8]. This scheme is based on multivariate Gaussian model of image residuals, instead of pixels in MG. This scheme is abbreviated as MGR. And, this scheme estimates variances by using a simple method instead a complex one in MiPOD.

- Image residuals are obtained by filtering an image with high-pass filters.
- -Steganalysis benefits from extracting effective features from image residuals. Modeling image residuals, we aim to better preserve the statistical model of an image.
- Model image residuals as zero-mean quantized multivariate Gaussian distributions. The distribution of stego image residuals can be approximately derived from the embedding change probabilities associated with pixels.
- -Fisher information (FI) can be efficiently obtained by using the estimated local variance of residuals and the corresponding high-pass filter coefficients. We select the optimal FI from a set of FIs.
- The proposed scheme performs well and has low computation complexity.

Proposed Method

FIGURE 1: The processing pipeline of the proposed MGR scheme.

. Residual model

(2

-Let $\mathbf{Y} = \mathbf{X} + \mathbf{N}$, where \mathbf{X} , \mathbf{Y} and \mathbf{N} are the cover image, the stego image and the embedding changes, respectively. Image residuals are obtained as :

(1)
$$\eta_{Y} = Y \otimes H = (X + N) \otimes H = \eta_{X} + N \otimes H$$

– The 2-D high-pass filter is formed as :

)
$$\boldsymbol{H} = \begin{bmatrix} a_{11} \cdots a_{1S} \\ \cdots \\ a_{R1} \cdots \\ a_{RS} \end{bmatrix}, a_{uv} \in \mathbb{Z}, \sum_{u=1}^{R} \sum_{v=1}^{S} a_{uv} = 0.$$

-Model residuals as zero-mean quantized multivariate Gaussian distributions $\eta_{X_i} \sim Q_{\Delta}(\mathcal{N}(0,\nu_i))$. Let the symbols $p^{(i)} = \{p_j^{(i)}\}$ and $q^{(i)} = \{q_i^{(i)}\} \ (j \in \mathcal{M})$ to denote the probability mass function (PMF) of η_{X_i} and that of η_{Y_i} , respectively.

(3)
$$q_j \approx (1 - 2\beta_i)p_j + \frac{\beta_i}{R \times S} \sum_{u=1}^R \sum_{v=1}^S (p_{j+a_{uv}} + p_{j-a_{uv}}).$$

A New Spatial Steganographic Scheme by Modeling Image Residuals with Multivariate Gaussian Model

Xinghong Qin, Bin Li*, Jiwu Huang

Guangdong Key Laboratory of Intelligent Information Processing and Shenzhen Key Laboratory of Media Security, College of Information Engineering, Shenzhen University, Shenzhen 518060, China.

– For a large n and small embedding change probabilities β_i , the total KL divergence between the cover and the stego can be approximated by :

(4)
$$\sum_{i=1}^{n} D_{KL}(p^{(i)}||q^{(i)}) = \frac{1}{2} \sum_{i=1}^{n} \beta_i^2 I_i(0).$$

– The FI is approximate as :

(5)
$$I_{i}(0) = \sum_{j} \frac{1}{p_{j}^{(i)}} (\frac{\partial q_{j}^{(i)}}{\partial \beta_{i}}|_{\beta_{i}=0})^{2} \approx \frac{\Delta^{4} (\sum_{u=1}^{R} \sum_{v=1}^{S} a_{uv}^{2})^{2}}{(R \times S)^{2} \nu_{i}^{2}}.$$

The FI is relative to v_i^2 of residuals and coefficients of the filter. 2. Computing Costs

- The final FI values are obtained by $I_i(0) = \max\{I_i^{\mathbf{H}_k}(0)\}, \mathbf{H}_k \in \mathbb{H}.$ -Under payload constraint $\alpha n = \sum_{i=1}^{n} h(\beta_i)$, compute change probabilities β_i .

-Satisfying $\beta_i = exp(\lambda\xi_i)/(1 + 2exp(\lambda\xi_i))$, the initial costs are solved as :

$$\xi_i = \frac{1}{\lambda} \ln(\frac{1}{\beta_i} - 2).$$

– Use an average low-pass filter to spread the initial costs to obtain the final embedding costs as :

(7)

 $oldsymbol{
ho}=oldsymbol{\xi}\otimes oldsymbol{L}$

Experiments

1. Setup.

– Database : BOSSBase ver.1.01[1].

– Comparison schemes

– Designed heuristically : WOW[5], S-UNIWARD[6] and HILL[7] – Model-based : MG[4] and MiPOD[8]

– Steganalysis

- Artificial features : SRM[3] and maxSRMd2[2]
- Deep neural network : Xu-Net[9]

– The ternary optimal embedding simulator was used for all methods.

2. Impact of parameters.

TABLE 1: \overline{P}_E of MGR with different high-pass filters under different payload α against SRM. MGR* denotes the scheme using SH, SV, and KB filters together. (MG is used for comparison.)

	-			-		
lpha	0.05	0.1	0.2	0.3	0.4	0.5
MG	0.3715	0.2935	0.2131	0.1654	0.1339	0.1119
MGR(SH)	0.4083	0.3467	0.2686	0.2142	0.1733	0.1400
MGR(KB)	0.4327	0.3668	0.2745	0.2066	0.1617	0.1253
MGR(KV)	0.4155	0.3511	0.2485	0.1884	0.1443	0.1129
MGR*	0.4516	0.3951	0.3081	0.2383	0.1882	0.1518

TABLE 2: \overline{P}_E of MGR^{*} with $h \times h$ average filter under different payloads α against SRM.

α	0.05	0.1	0.2	0.3	0.4	0.5
h = 3	0.4584	0.4108	0.332	0.2741	0.2193	0.1782
h = 5	0.4653	0.4296	0.358	0.2961	0.2473	0.2020
h = 7	0.4668	0.4289	0.3624	0.3015	0.2506	0.2103
h = 9	0.4644	0.4276	0.3587	0.2991	0.2488	0.2079
h = 11	0.4613	0.4258	0.3565	0.2974	0.2463	0.2065

Mi

TABLE 4: The averaged elapsed time (in second) used in computing FI for MiPOD

 and MGR.

Conclusion

– Different from MG which models image elements, MGR explicitly considers the KL divergence in terms of image residuals, which are commonly used in steganalysis.

- The mathematically derived FI is related to both Gaussian variance and high-pass filter coefficients.

FIGURE 3: Against maxSRMd2.

TABLE 3: \overline{P}_E under different payloads α against Xu-Net. 0.05 0.1 0.2 0.4 0.3 0.5

ILL	0.4622	0.4072	0.3352	0.2751	0.2259	0.1963
POD	0.4591	0.4117	0.3359	0.2730	0.2306	0.1945
IGR	0.4595	0.4251	0.3540	0.2908	0.2478	0.2073

4. Computation complexity

Scheme	MiPOD	MGR
Elapsed time (s)	0.4329	0.0542

- FI values.

Future Research

Take more insightful investigation such as making regulation on the filter coefficients to improve performance.

Acknowledgement

This work was supported in part by NSFC (Grant 61572329, 61872244, U1636202, 61772349) and in part by the Shenzhen R&D Program (Grant JCYJ20160328144421330).

Références

- IEEE.

- October 2014.

– Various filters can be employed in MGR by considering the maximum

– The proposed method achieves the best overall performance when compared with HILL and MiPOD.

[1] P. Bas, T. Filler, and T. Pevný. Break our steganographic system : The ins and outs of organizing BOSS. In Proc. IH, pages 59-70, Prague, Czech Republic, May 2011.

[2] T. Denemark, V. Sedighi, V. Holub, R. Cogranne, and J. Fridrich. Selection-channel-aware rich model for steganalysis of digital images. In Proc. WIFS, pages 48–53, Atlanta, GA, USA, December 2014.

[3] J. Fridrich and J. Kodovský. Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Security, 7(3):868–882, June 2012.

[4] J. Fridrich and J. Kodovský. Multivariate gaussian model for designing additive distortion for steganography. In Proc. ICASSP, pages 2949-2953, Vancouver, BC, Canada, May 2013.

[5] V. Holub and J. Fridrich. Designing steganographic distortion using directional filters. In Proc. WIFS, pages 234–239, Costa Adeje, Tenerife, Spain, December 2012.

[6] V. Holub, J. Fridrich, and T. Denemark. Universal distortion function for steganography in an arbitrary domain. EURASIP Journal on Infor*mation Security*, 2014(1) :1, January 2014.

[7] B. Li, M. Wang, J. Huang, and X. Li. A new cost function for spatial image steganography. In Proc. ICIP, pages 4206-4210, Paris, France,

[8] V. Sedighi, R. Cogranne, and J. Fridrich. Content-adaptive steganography by minimizing statistical detectability. IEEE Transactions on Information Forensics and Security, 11(2):221–234, February 2016.

[9] Guanshuo Xu, Han-Zhou Wu, and Yun-Qing Shi. Structural design of convolutional neural networks for steganalysis. IEEE Signal Process*ing Letters*, 23(5) :708–712, may 2016.