ICASSP · 2016

Introduction

- The root-MUSIC (RM) method estimates DOAs as the roots of the MUSIC polynomial owing to Vandermonde structure of array manifold.
- Beamspace transformation based on phase mode excitation is applied for UCA to get the Vandermonde structure in array manifold with respect to azimuth angle.
- Sparse UCA root-MUSIC and manifold separation techniques were further utilized for extending ULA root-MUSIC for UCA.
- Recently, various existing DOA estimation techniques were reformulated in the spherical harmonics (SH) domain utilizing spherical microphone array.
- In this work, we have developed the theory of root-MUSIC in SH domain using manifold separation technique.

The Spherical Harmonics

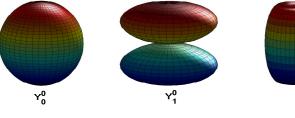
• $Y_n^m(\theta, \phi)$ is called spherical harmonic of order n and degree m. It is expressed as

$$Y_{n}^{m}(\Psi) = \sqrt{\frac{(2n+1)(n-m)!}{4\pi(n+m)!}} P_{n}^{m}(\cos\theta)e^{jm\phi},$$

$$\forall 0 \le n \le N, 0 \le m \le n$$

$$= (-1)^{|m|}Y_{n}^{|m|*}(\Psi), \forall -n \le m < 0,$$
 (12)

where P_n^m is the associated Legendre function.



SH-RM using Manifold Separation

- Manifold separation means writing steering vector (Manifold vector) as a product of a characteristic matrix of the array and a vector with Vandermonde structure depending on the azimuth angle. • Utilizing (14) and (12), the steering vector for co-elevation θ_0 ,
- can be written in more compact form as

$$\mathbf{y}^{H}(\Psi) = \mathbf{y}^{H}(\theta_{0}, \phi)$$

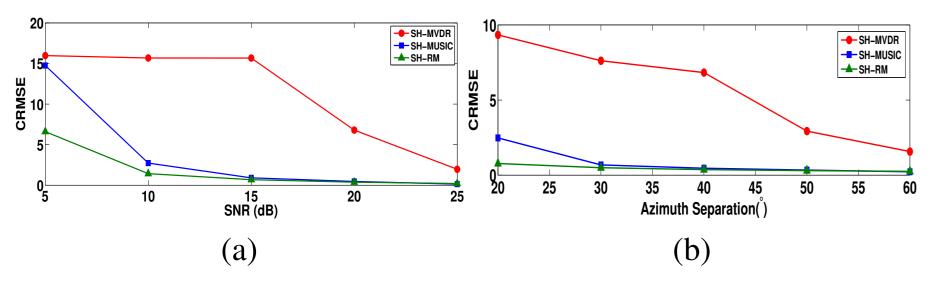
= $[f_{00}, -f_{1(-1)}e^{j\phi}, f_{10}, f_{11}e^{-j\phi}, \cdots, f_{NN}e^{-jN\phi}]^{T}$ (19)
here, $f_{nm} = \sqrt{\frac{(2n+1)(n-|m|)!}{4\pi(n+|m|)!}}P_{n}^{|m|}(\cos\theta_{0}).$ (20)

• Re-writing (19) in matrix form,

$\mathbf{y}^{H}(heta_{0},\phi)=F(heta_{0})d(\phi)$	(21)
where, $F(\theta_0) = \text{diag}(f_{00}, -f_{1(-1)}, f_{10}, f_{11}, \cdots, f_{NN})$	(22)
$d(\phi) = [1, e^{j\phi}, 1, e^{-j\phi}, \cdots, e^{-jN\phi}]^T$	(23)

RMSE Analysis

• CRMSE vs (a) SNR for two sources at $(20^\circ, 40^\circ)$ and $(20^\circ, 80^\circ)$, (b) azimuth separation, azimuth of one source is fixed at 40° and that of other source is varying in steps of 10° . SNR= 20dB.

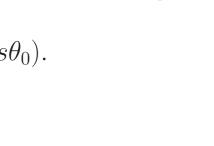


The Data Model in Spatial Domain

• $e^{-j\mathbf{k}_l^T\mathbf{r}_i}$ is plane wave solution to the wave equation in Cartesian co-ordinates. Steering Vector Matrix in SH Domain

- $\bullet \mathbf{Y}(\mathbf{\Phi})$

SH-RM using Manifold Separation



The Spherical Harmonics root-MUSIC

Lalan Kumar¹, Guoan Bi², and Rajesh M. Hegde³ ¹IIT Bhubaneswar, ²NTU Singapore, and ³IIT Kanpur

• A spherical microphone array of order N, radius r and the number of sensors I is considered. A sound field of L plane-waves is incident on the array with wavenumber k.

• The l^{th} source location is denoted by $\Psi_l = (\theta_l, \phi_l)$ and i^{th} sensor location is given by $\Phi_i = (\theta_i, \phi_i)$.

• In spatial domain, the sound pressure at I microphones, $\mathbf{p}(k) =$ $[p_1(k), p_2(k), ..., p_I(k)]^T$, is written as

$$\mathbf{p}(k) = \mathbf{V}(k)\mathbf{s}(k) + \mathbf{n}(k), \text{ where}$$
(1)
$$\mathbf{V}(k) = [\mathbf{v}_{\mathbf{f}}(k), \mathbf{v}_{\mathbf{f}}(k)]$$
(2)

$$\mathbf{V}(k) = [\mathbf{v}_1(k), \mathbf{v}_2(k), \dots, \mathbf{v}_L(k)]$$
(2)
$$\mathbf{v}_l(k) = [e^{-j\mathbf{k}_l^T\mathbf{r}_1} \ e^{-j\mathbf{k}_l^T\mathbf{r}_2} \ e^{-j\mathbf{k}_l^T\mathbf{r}_I}]^T$$
(3)

$$l(k) = [e^{-\jmath \mathbf{k}_l^T \mathbf{r}_1}, e^{-\jmath \mathbf{k}_l^T \mathbf{r}_2}, \dots, e^{-\jmath \mathbf{k}_l^T \mathbf{r}_I}]^T$$
(3)
$$\mathbf{k}_l = -(k \sin \theta_l \cos \phi_l, k \sin \theta_l \sin \phi_l, k \cos \theta_l)^T$$
(4)

$$\mathbf{r}_{i} = (r\sin\theta_{i}\cos\phi_{i}, r\sin\theta_{i}\sin\phi_{i}, r\cos\theta_{i})^{T}$$
(5)

• Substituting (6) and (3) in (2), the expression of steering matrix becomes

$$\mathbf{V}(k) = \mathbf{Y}(\Phi)\mathbf{B}(kr)\mathbf{Y}^{H}(\Psi)$$
(13)

(
$$\Phi$$
) is $I \times (N+1)^2$ matrix whose i^{th} row is given as

$$\mathbf{y}(\Phi_i) = [Y_0^0(\Phi_i), Y_1^{-1}(\Phi_i), Y_1^0(\Phi_i), Y_1^1(\Phi_i), \dots, Y_N^N(\Phi_i)].$$
(14)

• The $(N+1)^2 \times (N+1)^2$ matrix $\mathbf{B}(kr)$ is given by

 $\mathbf{B}(kr) = diag(b_0(kr), b_1(kr), b_1(kr), b_1(kr), \dots, b_N(kr)).$ (15)

• $d(\phi)$ consists of only exponent terms containing azimuth angle. Each submatrix corresponding to a particular order, follows Vandermonde structure.

• Utilizing (21), the SH-MUSIC cost function can be written as

$$P_{SHM}^{-1}(\phi) = d^{H}(\phi)F^{H}(\theta_{0})\mathbf{S}_{\mathbf{a_{nm}}}^{\mathbf{NS}}[\mathbf{S}_{\mathbf{a_{nm}}}^{\mathbf{NS}}]^{H}F(\theta_{0})d(\phi)$$
$$= d^{H}(\phi)F^{H}(\theta_{0})\mathbf{C}F(\theta_{0})d(\phi) \qquad (24)$$
where, $\mathbf{C} = \mathbf{S}_{\mathbf{a_{nm}}}^{\mathbf{NS}}[\mathbf{S}_{\mathbf{a_{nm}}}^{\mathbf{NS}}]^{H}$

• Utilizing (23) and $z = e^{j\phi}$ in (24), the SH-MUSIC cost function now, assumes a form of polynomial of degree 4N, given by

$$P_{SHM}^{-1}(\phi) = \sum_{u=-2N}^{2N} C_u z^u$$
(25)

where the co-efficients C_u are obtained mathematically.

• If z is root of the polynomial then $\frac{1}{z^*}$ will also be the root.

Statistical Analysis

• Confidence interval of $\zeta = 5^{\circ}$ was used for probability of resolution given by

$$P_r = \frac{1}{2T} \sum_{t=1}^{T} \sum_{l=1}^{2} \left[Pr(|\phi_l - \hat{\phi}_l^{(t)}| \le \zeta) \right]$$
(27)

Method	SNR (5dB)	SNR (10dB)	SNR (15dB)	SNR (20dB)	SNR (25dB)
SH-RM	0.5131	0.7575	0.8386	0.8790	0.9032
H-MUSIC	0	0.6198	0.8051	0.8689	0.9013
SH-MVDR	0	0	0	0.0046	0.3168

Finite Order Mode Strength

• Writing
$$e^{-j\mathbf{k}_l^T\mathbf{r}_i}$$
 in sph

$$e^{-j\mathbf{k}_l^T\mathbf{r}_i} = \sum_{n=0}^{\infty} \sum_{m=-n}^n b_n(k,r) [Y_n^m(\Psi_l)]^* Y_n^m(\Phi_i)$$
(6)

$$b_n(kr) = 4\pi j^n j_n(m)$$
$$= 4\pi j^n (j_n)$$

- Substituting (13) in (1), then multiplying both sides with $\mathbf{Y}^{H}(\mathbf{\Phi})\mathbf{\Gamma}$ and utilizing the relations in (10) and (11), the data model in spherical harmonics domain can be written as

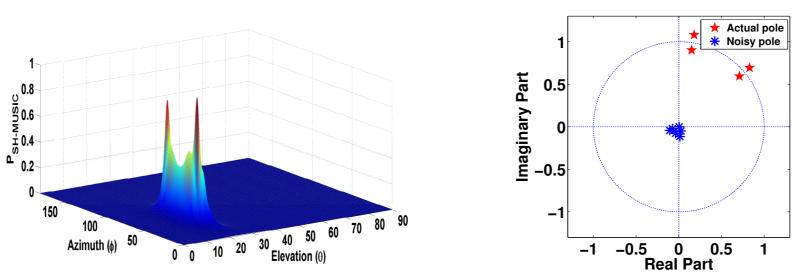
$$\mathbf{p_{nm}}(k) = \mathbf{B}(kr)\mathbf{Y}^{H}(\Psi)\mathbf{s}(k) + \mathbf{n_{nm}}(k).$$
(16)

both side by $\mathbf{B}^{-1}(kr)$, we have

$$\mathbf{a_{nm}}(k) = \mathbf{Y}^{H}(\Psi)\mathbf{s}(k) + \mathbf{z_{nm}}(k), \text{ where,}$$
(17)
$$\mathbf{z_{nm}}(k) = \mathbf{B}^{-1}(kr)\mathbf{n_{nm}}(k)$$

SH-RM using Manifold Separation

- SNR = 15 dB.



Validation with Real Data

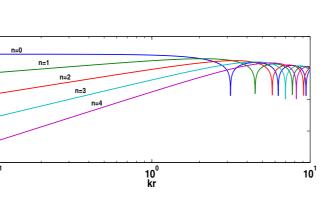
- Eigenmike was utilized in anechoic chamber to acquire data.
- A sound with frequency 1250Hz was played using smartphone speaker fixed at $(90^\circ, 90^\circ)$ in far-field region.
- All the 2N(=8) roots within the unit circle are plotted in the Figure.

herical co-ordinates, we have

rength $b_n(k, r)$ is given by

for open sphere (7) (kr),i'(kr)

$$h_n(kr) - \frac{J_n(kr)}{h'_n(kr)}$$
, for rigid sphere (8)



• b_n decreases significantly for n > kr. The summation in (6) can be truncated to some finite $N \ge kr$, called array order.

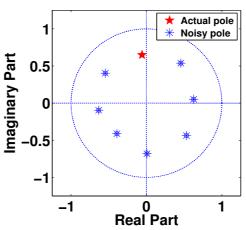
Final Data Model in SH Domain

• $\mathbf{B}(kr)$ is a constant based on the array geometry. Multiplying

• Out of 4N roots, 2N roots will be within the unit circle and 2Noutside the unit circle. Of the 2N roots within the unit circle, L roots close to unit circle correspond to the DOAs.

• As $z = e^{j\phi}$, the DOA can be estimated from the roots by using the relation, $\phi = \Im(ln(z))$, where $\Im()$ is imaginary part of ().

• SH-MUSIC and SH-root-MUSIC plots are illustrated in the following Figure for two sources at $(20^\circ, 40^\circ)$ and $(20^\circ, 80^\circ)$, N = 4,



Spherical Fourier Transform

• The Spherical Fourier Transform (SFT) of the received pressure, p(k), is given as

$$p_{nm}(k) = \int_0^{2\pi} \int_0^{\pi} p(k) [Y_n^m(\Phi_i)]^2$$
$$\approx \sum_{i=1}^I a_i p_i(k) [Y_{nm}(\Phi_i)]^2$$

• In matrix form for all $n \in [0, N]$, $m \in [-n, n]$ and I, the SFT becomes -H

$$\mathbf{p_{nm}}(k) = \mathbf{Y}^{II}(\mathbf{\Phi})\mathbf{\Gamma}$$

- where $\Gamma = \text{diag}(a_1, a_2, \cdots, a_I)$ is matrix of sampling weights. • Under the assumption of (9), we have the orthogonality property
- of spherical harmonics as

$$\mathbf{Y}^{H}(\mathbf{\Phi})\mathbf{\Gamma}\mathbf{Y}(\mathbf{\Phi}) =$$

(11)The Spherical Harmonics MUSIC

- Comparing the spatial data model in (1) with spherical harmonics data model in (17), $[\mathbf{Y}^{H}(\Psi)]_{(N+1)^{2} \times L}$ is the steering matrix in spherical harmonics domain.
- The SH-MUSIC spectrum can thus be written as

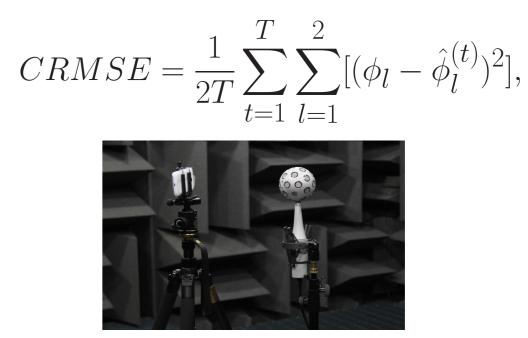
$$P_{SHM}(\Psi) = \frac{1}{\mathbf{y}(\Psi)\mathbf{S}_{\mathbf{a}_{nm}}^{\mathbf{NS}}[\mathbf{S}_{\mathbf{a}_{nm}}^{\mathbf{NS}}]}$$

where $\mathbf{y}^{H}(\Psi)$ is a steering vector and can be written as (14).

• $S_{a_{nm}}^{NS}$ is the noise subspace obtained from eigenvalue decomposition of autocorrelation matrix, $\mathbf{S}_{\mathbf{a}_{nm}} = E[\mathbf{a}_{nm}(k)\mathbf{a}_{nm}(k)^H].$

Performance Evaluation

- The experiments utilized an Eigenmike^(R) system, consisting of 32 microphones, embedded in a rigid sphere of radius 4.2cm.
- The RMSE analysis and statistical analysis are presented for two sources at $(20^\circ, 40^\circ)$ and $(20^\circ, 80^\circ)$ using 500 independent Monte Carlo trials.
- Cumulative root mean square error (CRMSE) and probability of resolution were used to evaluate the performance of the proposed method.
- The CRMSE is computed using



Conclusions

- Theory of root-MUSIC is established in spherical harmonics domain. The theory is validated using simulation and real data experiments.
- The Vandermonde structure of array manifold in spherical harmonics domain is shown using manifold separation technique.
- The robustness of the method is illustrated by using source localization experiments for various SNRs and angular separations.

 $[\Phi)]^*\sin(\theta)d\theta d\phi$

 $)]^{*},$ (9)

 $\Gamma \mathbf{p}(k),$ (10)

(18) $\mathbf{NS}] H_{\mathbf{y}} H(\Psi)^{2}$

(26)