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Introduction

e The root-MUSIC (RM) method estimates DOASs as the roots of
the MUSIC polynomial owing to Vandermonde structure of array
manifold.

e Beamspace transformation based on phase mode excitation 1s ap-
plied for UCA to get the Vandermonde structure in array mani-
fold with respect to azimuth angle.

e Sparse UCA root-MUSIC and manifold separation techniques
were further utilized for extending ULA root-MUSIC for UCA.

e Recently, various existing DOA estimation techniques were re-
formulated 1n the spherical harmonics (SH) domain utilizing spher-
ical microphone array.

e In this work, we have developed the theory of root-MUSIC in SH
domain using manifold separation technique.

The Spherical Harmonics

e Y0, ¢) is called spherical harmonic of order n and degree m.
It 1s expressed as

Y M(W) = \/(Zn D - m>!P,,T(0039)ejm¢,

dm(n +m)!
VO<n<NO<m<n

— (v Yy —n<m <0, (2)

where P is the associated Legendre function.
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SH-RM using Manifold Separation

e Manifold separation means writing steering vector (Manifold vec-
tor) as a product of a characteristic matrix of the array and a vec-
tor with Vandermonde structure depending on the azimuth angle.

e Utilizing (14) and (12), the steering vector for co-elevation 6,
can be written in more compact form as

y" (V) = y" (60, ¢) | | |
= [ foo, —f1(—1)€‘7¢7 J10; fne_m7 e ,fNNe_JN¢]T (19)

where, f., = \/(22:(7138?m||;1>!an(00890). (20)

e Re-writing (19) in matrix form,

y" (00, ¢) = F(6p)d(o) (21)
Where, F<60) — diag<f007 _fl(—1)7 f107 f117 o 7fNN) (22)
d(¢) =[1,e'?,1,e7?, ... e N (23)

RMSE Analysis

e CRMSE vs (a) SNR for two sources at (20°,40°) and (20°,80°),
(b) azimuth separation, azimuth of one source is fixed at 40° and
that of other source is varying in steps of 10°. SNR= 20dB.
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The Data Model 1n Spatial Domain

e A spherical microphone array of order N, radius r and the num-
ber of sensors / 1s considered. A sound field of L plane-waves is
incident on the array with wavenumber £.

e The [!" source location is denoted by ¥; = (6, ¢;) and '/ sensor
location is given by ®; = (6;, ¢;).

e In spatial domain, the sound pressure at / microphones, p(k) =
p1(k), pa(k), ... ,p](k)]T, is written as

p(k) = V(k)s(k) + n(k), where (1)

V(k) = [vi(k),va(k),...,v(k)] (2)

vi(k) = [e_jlerl, e_jlerQ, . e‘jk?rI]T (3)

k; = —(ksin 0; cos ¢y, k sin 0; sin ¢y, k cos HZ)T (4)

r; = (rsin6; cos ¢;, rsin 6, sin ¢;, r cos «92-)T (5)

—jkTri- 1 Tut; h . in C .
e ¢ /™ 71 1S plane wave solution to the wave equation 1 Cartesian
co-ordinates.

Steering Vector Matrix in SH Domain

e Substituting (6) and (3) in (2), the expression of steering matrix
becomes

V(k) = Y(®)B(kr)Y (1) (13)
e Y (®)is I x (N + 1)? matrix whose i'" row is given as
y(®;) = [¥'(®:), Y171 (@), Y1'(®7), VI (@), ..., Yy (D1)]. (14)
e The (N + 1)? x (N + 1)? matrix B(kr) is given by

B(kr) = diag(by(kr), by (kr), by(kr), bi(kr), ... byn(kr)). (15)

SH-RM using Manifold Separation

e d(¢) consists of only exponent terms containing azimuth angle.
Each submatrix corresponding to a particular order, follows Van-
dermonde structure.

e Utilizing (21), the SH-MUSIC cost function can be written as

Pk () = dH () FH (60)SNS [SNS1H F(6y)d(9)

= d" (o) F1(09)CF(6y)d(o) (24)
where, C = SaNmSn[Slii]H

e Utilizing (23) and z = /% in (24), the SH-MUSIC cost function
now, assumes a form of polynomial of degree 4V, given by

2N
Psaa(®) = Y Cuz" (25)
u=—2N

where the co-efficients (', are obtained mathematically.
1
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Statistical Analysis

e If 2 1s root of the polynomial then = will also be the root.

e Confidence interval of ( = 5° was used for probability of resolu-
tion given by

T 2
DL (R K E¥9) eY)
t=1 [=1

Method SNR | SNR SNR SNR | SNR
(5dB) | (10dB) | (15dB) | (20dB) (25dB)

SH-RM [ 0.5131] 0.7575 | 0.8386 | 0.8790 | 0.9032
SH-MUSIC| O 0.6198 | 0.8051 | 0.8689 | 0.9013
SH-MVDR 0 0 0 0.0046 | 0.3168

Finite Order Mode Strength

. ik Ty : .
e Writing ¢ JKi T n spherical co-ordinates, we have

e TR = NTUNT b (k) [VHU) Y B (6)

n=0m=-—n

e The far-field mode strength b,,(k, r) is given by

= 45" (jn(kr) —

for open sphere  (7)
Jnlkr)
h! (kr)

), for rigid sphere (8)
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e b, decreases significantly for n > kr. The summation in (6) can
be truncated to some finite /N > kr, called array order.

Final Data Model in SH Domain

e Substituting (13) in (1), then multiplying both sides with Y ()

and utilizing the relations 1n (10) and (11), the data model 1n
spherical harmonics domain can be written as

pom(k) = B(kr)Y X (U)s(k) + npm (k). (16)

e B(kr) is a constant based on the array geometry. Multiplying
both side by B~!(kr), we have

anm(k) = Y7 (U)s(k) + znm(k), where, (17)
Zonm(k) = B (kr)nnm(k)

SH-RM using Manifold Separation

e Out of 4N roots, 2N roots will be within the unit circle and 2N
outside the unit circle. Of the 2/V roots within the unit circle, L
roots close to unit circle correspond to the DOAs.

e As z = ¢/?, the DOA can be estimated from the roots by using
the relation, ¢ = &(In(z)), where () is imaginary part of ().

e SH-MUSIC and SH-root-MUSIC plots are illustrated in the fol-
lowing Figure for two sources at (20°,40°) and (20°,80°), N =4,
SNR = 15dB.
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Validation with Real Data

e Eigenmike was utilized in anechoic chamber to acquire data.

e A sound with frequency 1250Hz was played using smartphone
speaker fixed at (90, 90°) in far-field region.

e All the 2N (= 8) roots within the unit circle are plotted in the
Figure.
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Spherical Fourier Transform

e The Spherical Fourier Transform (SFT) of the received pressure,
p(k), is given as

2T T
P (k) = /O /O p(B)Y.™ (@)]* sin(9)dBd
I
=N api (k) [Youm(®;)], (9)
1=1

e In matrix form for all n € |0, N|, m € |—n,n| and I, the SFT
becomes

pnm(k) = Y (®)p(k), (10)
where I' = diag(aq, a9, - - - , ay) is matrix of sampling weights.
e Under the assumption of (9), we have the orthogonality property
of spherical harmonics as

YH(@®)rY(®) =1, (11)

The Spherical Harmonics MUSIC

e Comparing the spatial data model in (1) with spherical harmonics
data model in (17), [Y# (V)] (N41)2x 1, 1s the steering matrix in
spherical harmonics domain.

e The SH-MUSIC spectrum can thus be written as

1
PonuV) = s sy gy (Y

where y /! (V) is a steering vector and can be written as (14).
o SINS

anm

tion of autocorrelation matrix, Sa_ = Elanm(k)anm(k)].

Pertormance Evaluation

1s the noise subspace obtained from eigenvalue decomposi-

e The experiments utilized an Eigenmike® system, consisting of
32 microphones, embedded in a rigid sphere of radius 4.2cm.

e The RMSE analysis and statistical analysis are presented for two
sources at (20°,40°) and (20°, 80°) using 500 independent Monte
Carlo trials.

e Cumulative root mean square error (CRMSE) and probability of
resolution were used to evaluate the performance of the proposed
method.

e The CRMSE is computed using

T 2
1 )
CRMSE = > > e - ¢§t>)2], (26)

t=1 =1

Conclusions

e Theory of root-MUSIC i1s established in spherical harmonics do-
main. The theory 1s validated using simulation and real data ex-
periments.

e The Vandermonde structure of array manifold in spherical har-
monics domain 1s shown using manifold separation technique.

e The robustness of the method is illustrated by using source local-
1zation experiments for various SNRs and angular separations.




