
Disjunct Matrices for Compressed Sensing

P. Sasmal, S. S. Thoota, C. R. Murthy

Dept. of Electrical Communication Engineering (ECE)
Indian Institute of Science, Bangalore, India

email:{pradipsasmal, thoota, cmurthy}@iisc.ac.in

ICASSP 2019
May 11, 2019

(C. R. Murty, ECE, IISc) Disjunct Matrices for Compressed Sensing ICASSP 2019May 11, 2019 1 / 21



Outline

1 Motivation

2 Contributions

3 Basics of Disjunct matrices

4 Relation with Spark and Mutual Coherence

5 Recovery of Sparse Signals Using a Binary Matrix
Recovery of all sparse signals using Binary Matrix
Recovery of Almost All Sparse Signals Using a Binary Matrix

6 Disjunctness of a Sparse Matrix

7 Recovery of Sparse Signals Using a Sparse Matrix
Recovery of All Sparse Signals Using a Sparse Matrix
Recovery of almost all sparse signals using Sparse matrix

8 Simulation Results
Run-time Comparison

9 Future Work

(C. R. Murty, ECE, IISc) Disjunct Matrices for Compressed Sensing ICASSP 2019May 11, 2019 2 / 21



Motivation

Motivation

Basic pursuit (BP) & orthogonal matching pursuit (OMP): polynomial
complexity in problem dimension

Impractical and expensive in high dimensional settings

Verifying conditions based on spark and RIP is not easy
Hence, in practice, it remains unknown whether a given instantiation of the
measurement matrix satisfies these properties

Goal

Identify a property of a matrix that is easy to verify and also supports low
computational complexity sparse recovery algorithms, while perhaps requiring a
larger number of measurements for success.
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Contributions

Contributions

We connect non-adaptive group testing and compressed sensing
Disjunctness property of binary matrices is also very useful in recovering sparse signals

We exploit the disjunctness property to present an ultra-low complexity algorithm for
identifying the support as well as recover the nonzero coefficients of the sparse signal

Non-iterative algorithm, very fast

We extend the disjunctness property of a binary matrix to sparse matrices. We show
that a similar non-iterative and fast sparse recovery algorithm is possible
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Contributions

Notation

The set {1, 2, . . . , n} is denoted by [n].

The i-th entry of x is denoted by xi .

Φ(:, i) and Φ(j , :) denote the i-th column and j-th row of Φ, respectively, and Φ(j , i)
denotes the (j , i)th entry of Φ.

The support of x is {i : xi 6= 0}, denoted by supp(x).

Let S ⊂ [n], then xS , (xi )i∈S and ΦS , (Φ(:, i))i∈S
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Basics of Disjunct matrices

Disjunct Matrix

Definition 1

An m ×M binary matrix Φ is called t-disjunct if the support of any column is not
contained in the union of the supports of any other t columns.

Implications:

If we take a submatrix ΦS with |S | = t + 1, then for i ∈ [t + 1], there exists ji such
that ΦS(ji , i) = 1 and ΦS(ji , l) = 0 for all l ∈ [t + 1] \ i

This observation will be crucial for non-iterative recovery of almost all sparse signals

C. L. Chan, S. Jaggi, V. Saligrama and S. Agnihotri, ”Non-Adaptive Group Testing: Explicit
Bounds and Novel Algorithms,” in IEEE Transactions on Information Theory, vol. 60, no. 5, pp.
3019-3035, May 2014.
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Basics of Disjunct matrices

te−disjunct Matrix

Definition 2

A matrix Φ is te-disjunct if, given any t + 1 columns of Φ with one designated column,
there are e + 1 rows with a 1 in the designated column and a 0 in each of the other t
columns.

Implications:

If we take a submatrix ΦS with |S | = t + 1, then for i ∈ [t + 1], there exists
j1
i , . . . , j

e+1
i such that ΦS(jdi , i) = 1 and ΦS(jdi , l) = 0 for all l ∈ [t + 1] \ i and

d = 1, . . . , e + 1.

We exploit this property for recovering all signals with a given max. sparsity level

A. J. Macula“ Error-correcting nonadaptive group testing with de−disjunct matrices,” Discrete
Applied Mathematics, Vol 80, Issues 23, Pp 217-222 11 December 1997.
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Basics of Disjunct matrices

Disjuntness of a Constant Column Weight Binary Matrix

Theorem 1

Let Φ be a m ×M matrix with each column containing q ones and the overlap (i.e., the
size of the intersection of the supports) between any two distinct columns is at most r .
Then Φ is b q−1

r
c-disjunct.

A. Mazumdar, “Nonadaptive Group Testing With Random Set of Defectives,” IEEE
Transactions on Information Theory, vol. 62, no. 12, pp. 7522-7531, Dec. 2016.
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Relation with Spark and Mutual Coherence

Relation with Spark

Definition 3

The spark of a matrix is the smallest number of linearly dependent columns in the matrix

Necessary and sufficient condition for uniqueness
If spark(Φ) = k, sparse vectors with up to k/2 nonzero entries (and no more) can be
uniquely recovered from y = Φx

Theorem 2

The spark of a t-disjunct matrix is at least t + 1

Proof 1

Follows from the definition of a disjunct matrix.
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Relation with Spark and Mutual Coherence

Relation with Mutual Coherence

Definition 4

The mutual coherence µΦ of Φ is the maximum absolute inner product between any two
distinct normalized columns of Φ

Theorem 3

A matrix Φ containing the same number of ones in each column is (bµ−1
Φ c − 1)-disjunct.

Proof 2

Follows from the fact that if each column of Φ contains q ones and the overlap between
any two columns is at most r , then its mutual coherence µΦ ≤ r

q
.
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Recovery of Sparse Signals Using a Binary Matrix Recovery of all sparse signals using Binary Matrix

Recovery of all sparse signals using Binary Matrix

Suppose Φ(:, i) contains qi ones for i ∈ [M], qmin , min{q1, . . . , qM}, and that the
overlap between any two distinct columns is at most rmax

Theorem 4

Φ is te-disjunct for any t < b qmin
rmax
c and e + 1 ≥ qmin − trmax

Theorem 5

Let Φ be a binary matrix with every column containing at least qmin ones and with the
overlap between any two distinct columns at most rmax. Then any b qmin

2rmax
c-sparse vector

can be uniquely recovered from y = Φx
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Recovery of Sparse Signals Using a Binary Matrix Recovery of all sparse signals using Binary Matrix

Proof (and a fast recovery algorithm)

Support recovery

S = {j : |supp(Φ(:, i)) ∩ supp(y)| > qmin
2
} is the support of x .

Non-zero coefficient recovery

Step-1 : As Φ is te-disjunct for some t < b qmin
rmax
c and e ≥ qmin − trmax − 1, it is also

b qmin
2rmax
c

qmin
2 -disjunct.

Step 2 : As a result, whenever s ∈ S , for ΦS(:, s) there exist j1
s , . . . , j

e+1
s rows such that

ΦS(jds , s) = 1 and ΦS(jds , l) = 0 for l ∈ S \ s and d = 1, . . . , e + 1.
Step 3 : Thus, we can directly recover

xs =

{
yjds , d = 1, . . . , e + 1 if i ∈ S

0, otherwise.
(1)
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Recovery of Sparse Signals Using a Binary Matrix Recovery of Almost All Sparse Signals Using a Binary Matrix

Recovery of Almost All Sparse Signals Using a t-Disjunct Binary Matrix

Assumption : yj =
∑

l∈supp(ΦS (j,:)) xl 6= 0, ∀ j ∈ [m]

This holds (a) with probability 1 if x is drawn from a generic random model; and
(or?) (b) x is a non negative sparse signal

Support recovery

S = [M] \
⋃

j :yj=0 supp(Φ(j , :))

Non-zero coefficient recovery

Step-1 : As Φ is t-disjunct, for i ∈ [k], there exists ji such that ΦS(ji , i) = 1 and
ΦS(ji , l) = 0 for all l ∈ [k] \ i
Step 2 : Set

xi =

{
yji , if i ∈ S

0, otherwise
(2)
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Disjunctness of a Sparse Matrix

Disjunctness of a Sparse Matrix

Definition 5

An m ×M sparse matrix Φ is said to be t-disjunct if the support of any column is not
contained in the union of the supports of any t other columns

Let Φ be a sparse matrix where Φ(:, i) contains qi non-zeros for i ∈ [M] with
qmin , min{q1, . . . , qM}
Let the cardinality of the intersection between support of any two distinct columns
be at most rmax

Theorem 6

Φ is te-disjunct if t < b qmin
rmax
c and e + 1 ≥ qmin − trmax.
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Recovery of Sparse Signals Using a Sparse Matrix Recovery of All Sparse Signals Using a Sparse Matrix

Recovery of All Sparse Signals Using a Sparse Matrix

Consider the linear system y = Φx , where k < qmin
2rmax

Support recovery

S = {j : |supp(Φ(:, i)) ∩ supp(y)| > qmin
2
}.

Non-zero coefficient recovery

(Step 1) and (Step 2): same as the binary case
Step 3: Set

xs =

{ y
jds

ΦS (jds ,s)
, d = 1, . . . , e + 1 if i ∈ S

0, otherwise
(3)
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Recovery of Sparse Signals Using a Sparse Matrix Recovery of almost all sparse signals using Sparse matrix

Recovery of almost all sparse signals using Sparse matrix

Assumption : yj =
∑

l∈supp(ΦS (j,:)) Φ(j , l)xl 6= 0, ∀ j ∈ [m].

This holds for same conditions as given for binary matrices.

Consider the linear system y = Φx , where Φ is t−disjunct and k < t + 1.

Support recovery

S = {i : supp(Φ(:, i)) ⊆ supp(y)}

Non-zero coefficient recovery

Step 1: same as in binary case.
Step 2: Now set

xi =

{ yji
Φ(ji ,i)

, if i ∈ S

0, otherwise.
(4)

(C. R. Murty, ECE, IISc) Disjunct Matrices for Compressed Sensing ICASSP 2019May 11, 2019 16 / 21



Simulation Results

Simulation Results

We use the binary sensing matrix Φ of size q2 × qr+1 constructed by Devore4 for q
being prime power and r > 1.

Every column of Φ has q ones and the overlap between any two distinct columns is
at most r

Φ is b q−1
r
c-disjunct and te-disjunct with t < b q

r
c and e + 1 ≥ q − tr

As an example, we take Φ of size (29)2 × (29)3 Therefore, Φ is 14−disjunct and also
714-disjunct (i.e., t = 7, e = 14) and µΦ ≤ 2

29

4R.A. DeVore, “Deterministic constructions of compressed sensing matrices,” Volume 23, Issues
46, Pp 918-925, 2007.
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Simulation Results

Continued ...

We consider sparsity k ≤ 33. For each k, we generate 1000 random k−sparse vectors

Our algorithm recovers sparse vectors with k = 15 in all 1000 trials, as expected

Further, the algorithm can recover x with much higher sparsity, up to k = 33, in all
1000 trials

An existing non-iterative sparse recovery algorithm5 can recover the unknown sparse
vector x only up to sparsity 7 exactly in all 1000 trials. Beyond k = 9, it fails to
recover even a single unknown sparse vector

This is because the existing algorithm requires 4k < q, i.e., k < 8, in order to ensure
that each nonzero entry in x occurs at least q/2 times in y .

5M. Lotfi and M. Vidyasagar, “A Fast Noniterative Algorithm for Compressive Sensing Using
Binary Measurement Matrices,” in IEEE Transactions on Signal Processing, vol. 66, no. 15, pp.
4079-4089, 1 Aug.1, 2018.
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Simulation Results Run-time Comparison

Run-time Comparison

1 4 7 10 13 16 19 22 25 28 31 33
Sparsity

0

0.05

0.1

0.15

0.2
T

im
e
 (

in
 s

e
c
o
n
d
s
)

Non Iterative

Ours

OMP

Figure: Avarage runtime comparison between Our proposed method, OMP and the existing
non-iterative algorithm for matrix size (29)2 × (29)3
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Future Work

Future Work

Deriving bounds on the number of rows required for the measurement matrix to
satisfy t-disjunctness

Sparse signal recovery guarantees for disjunct matrices in noisy measurement
settings.
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Future Work

THANK YOU!
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