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Motivation

e Basic pursuit (BP) & orthogonal matching pursuit (OMP): polynomial
complexity in problem dimension
o Impractical and expensive in high dimensional settings
e Verifying conditions based on spark and RIP is not easy

o Hence, in practice, it remains unknown whether a given instantiation of the
measurement matrix satisfies these properties

Goal

Identify a property of a matrix that is easy to verify and also supports low
computational complexity sparse recovery algorithms, while perhaps requiring a
larger number of measurements for success.
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Contributions

Contributions

@ We connect non-adaptive group testing and compressed sensing
o Disjunctness property of binary matrices is also very useful in recovering sparse signals

@ We exploit the disjunctness property to present an ultra-low complexity algorithm for
identifying the support as well as recover the nonzero coefficients of the sparse signal

o Non-iterative algorithm, very fast

o We extend the disjunctness property of a binary matrix to sparse matrices. We show
that a similar non-iterative and fast sparse recovery algorithm is possible
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Contributions

Notation

o The set {1,2,...,n} is denoted by [n].
@ The i-th entry of x is denoted by x;.

o ®(:,i) and ®(j,:) denote the i-th column and j-th row of ®, respectively, and ®(j, i)
denotes the (j, /)th entry of ®.

@ The support of x is {i : x; # 0}, denoted by supp(x).
o Let SC [I‘l]7 then xs £ (Xi)iES and &5 £ (d)(:7 i));es
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Disjunct Matrix

Definition 1

An m X M binary matrix ® is called t-disjunct if the support of any column is not
contained in the union of the supports of any other t columns.

Implications:

o If we take a submatrix ®s with |S| =t + 1, then for i € [t + 1], there exists j; such
that ®s(j;,/) = 1 and ®s(ji,/) =0forall [ € [t + 1]\

o This observation will be crucial for non-iterative recovery of almost all sparse signals

C. L. Chan, S. Jaggi, V. Saligrama and S. Agnihotri, " Non-Adaptive Group Testing: Explicit
Bounds and Novel Algorithms,” in IEEE Transactions on Information Theory, vol. 60, no. 5, pp.
3019-3035, May 2014.

(C. R. Murty, ECE, 1ISc) Disjunct Matrices for Compressed Sensing ICASSP 2019May 11, 2019 6 /21



t€—disjunct Matrix

Definition 2

A matrix ® is t®-disjunct if, given any t + 1 columns of ® with one designated column,
there are e + 1 rows with a 1 in the designated column and a 0 in each of the other t
columns.

Implications:

o If we take a submatrix ®s with |S| =t + 1, then for i € [t + 1], there exists
gt Jf™ such that ®s(j?, i) = 1 and ®s(j¢, /) = 0 for all / € [t + 1]\ i and
d=1,...,e+1.

o We exploit this property for recovering all signals with a given max. sparsity level

A. J. Macula*“ Error-correcting nonadaptive group testing with d®—disjunct matrices,” Discrete
Applied Mathematics, Vol 80, Issues 23, Pp 217-222 11 December 1997.
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Basics of Disjunct matrices

Disjuntness of a Constant Column Weight Binary Matrix

Theorem 1

Let & be a m x M matrix with each column containing q ones and the overlap (i.e., the

size of the intersection of the supports) between any two distinct columns is at most r.
Then ® is | <1 |-disjunct.

A. Mazumdar, “Nonadaptive Group Testing With Random Set of Defectives,” IEEE
Transactions on Information Theory, vol. 62, no. 12, pp. 7522-7531, Dec.-2016.
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Relation with Spark

Definition 3 J

The spark of a matrix is the smallest number of linearly dependent columns in the matrix

o Necessary and sufficient condition for uniqueness

o If spark(®) = k, sparse vectors with up to k/2 nonzero entries (and no more) can be
uniquely recovered from y = ®x

Theorem 2

The spark of a t-disjunct matrix is at least t + 1 J
Proof 1

Follows from the definition of a disjunct matrix. J
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Relation with Spark and Mutual Coherence

Relation with Mutual Coherence

Definition 4

The mutual coherence 1o of ® is the maximum absolute inner product between any two
distinct normalized columns of ®

Theorem 3

A matrix ® containing the same number of ones in each column is (| uug"| — 1)-disjunct.
v

Proof 2

Follows from the fact that if each column of ® contains q ones and the overlap between
any two columns is at most r, then its mutual coherence po < g.
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Recovery of Sparse Signals Using a Binary Matrix Recovery of all sparse signals using Binary Matrix

Recovery of all sparse signals using Binary Matrix

o Suppose ®(:, i) contains g; ones for i € [M], gmin = min{qi,...,qm}, and that the
overlap between any two distinct columns is at most rmax

Theorem 4

& is té-disjunct for any t < [q’“;;J and e +1 > QGmin — trmax

m,

Theorem 5

Let ® be a binary matrix with every column containing at least gmin ones and with the
overlap between any two distinct columns at most rmax. Then any Lﬁj-sparse vector
can be uniquely recovered from y = ®x
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Recovery of Sparse Signals Using a Binary Matrix Recovery of all sparse signals using Binary Matrix

Proof (and a fast recovery algorithm)

Support recovery

S ={j:|supp(®(:, 7)) Nsupp(y)| > 5=} is the support of x.

Non-zero coefficient recovery

Step-1: As & is t°-disjunct for some t < [0t | and e > Gmin — trmax — 1, it is also

ponin- | qm%—disjunct.
Step 2 : As a result, whenever s € S, for ®s(:, s) there exist ji, ..., ™" rows such that
®s(j¢,s) =1 and ds(j¢,/)=0for € S\sandd=1,...,e+1.

Step 3 : Thus, we can directly recover

0, otherwise.

{%%d:L”we+1iHeS
Xs =< 7%
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Recovery of Almost All Sparse Signals Using a Binary Matrix
Recovery of Almost All Sparse Signals Using a t-Disjunct Binary Matrix

o Assumption : y; =3, . o X 7 0, Vj € [m]
@ This holds (a) with probability 1 if x is drawn from a generic random model; and
(or?) (b) x is a non negative sparse signal

Support recovery

S=[M]\ Uj:yj:o supp(®(j,:))

Non-zero coefficient recovery
Step-1: As & is t-disjunct, for i € [k], there exists j; such that ®s(ji,/) =1 and
®s(ji, /) =0 forall 1 € [k]\ i
Step 2 : Set
Xi:{yj,., ifie$S @)

0, otherwise
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Disjunctness of a Sparse Matrix

Disjunctness of a Sparse Matrix

Definition 5

An m X M sparse matrix ® is said to be t-disjunct if the support of any column is not
contained in the union of the supports of any t other columns

o Let ® be a sparse matrix where ®(:, i) contains g; non-zeros for i € [M] with
Gmin 2 min{q1,...,qu}

@ Let the cardinality of the intersection between support of any two distinct columns
be at most rmax

Theorem 6
& is t°~disjunct if t < [ | and e +1 > Gmin — tfmax- J
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Recovery of Sparse Signals Using a Sparse Matrix Recovery of All Sparse Signals Using a Sparse Matrix

Recovery of All Sparse Signals Using a Sparse Matrix

o Consider the linear system y = ®x, where k <

2

Imin
Fmax

Support recovery

S ={j : [supp(®(:, 7)) N supp(y)| > 3=}

Non-zero coefficient recovery

(Step 1) and (Step 2): same as the binary case
Step 3: Set

3)

id — i
X = m,d—l,...7e+l IfIES
0, otherwise
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Recovery of Sparse Signals Using a Sparse Matrix Recovery of almost all sparse signals using Sparse matrix

Recovery of almost all sparse signals using Sparse matrix

o Assumption : y; = >0 PU, X #0, ¥V j € [m].
@ This holds for same conditions as given for binary matrices.

o Consider the linear system y = ®x, where ® is t—disjunct and k < t + 1.

Support recovery
S ={i:supp(®(:,7)) C supp(y)}

v
Non-zero coefficient recovery
Step 1: same as in binary case.
Step 2: Now set
= ifieS
x; = { @) ] (4)
0, otherwise.
v
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Simulation Results

Simulation Results

o We use the binary sensing matrix ® of size g> x g"™ constructed by Devore* for g
being prime power and r > 1.

@ Every column of ® has g ones and the overlap between any two distinct columns is
at most r

o & is [<!]-disjunct and t*-disjunct with t < 2] and e +1 > q — tr

o As an example, we take ® of size (29)? x (29)® Therefore, ® is 14—disjunct and also
7H-disjunct (i.e., t = 7,e = 14) and po < 2

4R.A. DeVore, “Deterministic constructions of compressed sensing matrices,” Volume 23, Issues
46, Pp 918-925, 2007.
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Simulation Results

Continued ...

@ We consider sparsity k < 33. For each k, we generate 1000 random k—sparse vectors
@ Our algorithm recovers sparse vectors with kK = 15 in all 1000 trials, as expected

o Further, the algorithm can recover x with much higher sparsity, up to kK = 33, in all
1000 trials

@ An existing non-iterative sparse recovery algorithm® can recover the unknown sparse
vector x only up to sparsity 7 exactly in all 1000 trials. Beyond k = 9, it fails to
recover even a single unknown sparse vector

@ This is because the existing algorithm requires 4k < gq, i.e., k < 8, in order to ensure
that each nonzero entry in x occurs at least ¢/2 times in y.

°M. Lotfi and M. Vidyasagar, “A Fast Noniterative Algorithm for Compressive Sensing Using
Binary Measurement Matrices,” in IEEE Transactions on Signal Processing, vol. 66, no. 15, pp.
4079-4089, 1 Aug.1, 2018.
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Simulation Results Run-time Comparison

Run-time Comparison
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Figure: Avarage runtime comparison between Our proposed method, OMP and the existing
non-iterative algorithm for matrix size (29)? x (29)3
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Future Work

@ Deriving bounds on the number of rows required for the measurement matrix to
satisfy t-disjunctness

@ Sparse signal recovery guarantees for disjunct matrices in noisy measurement
settings.
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Future Work

THANK YOU!
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