

OVERVIEW

Goals

- Confidence Estimation
- Error Localization
- Automatic performance measurement without transcripts

Prior-Art

- Lattice-based approaches.
- Classifier-based approaches.

Our approach

• Use dropout for bayesian uncertainty approximation in DNN output.

Figure 1: Decoding with dropout on at test time. Each network represents a different random selection of the active nodes. The white nodes denote dropped out units.

$D_{ m off}$:	i	i	agree with	the	a hundred percent there							
GT :	i	say	agree with	you	a hundred percent there							

D_{on}^1 :	i	i	agree with	you	a hundred percent there							
$D_{\rm on}^2$:	yes	i	agree with	the	a hundred percent there							
$D_{\rm on}^3$:	i	i	agree with	you	a hundred percent there							
$D_{\rm on}^4$:	yes	i	agree with	the	a hundred percent there							
C_w :	0.5	1	1 1	0.5	1 1 1 1							
True Positive		Fals	e Positive	Miss	sed Detection							

ANALYZING UNCERTAINTIES IN SPEECH RECOGNITION USING DROPOUT

APOORV VYAS, PRANAY DIGHE, SIBO TONG, HERVÉ BOURLARD IDIAP RESEARCH INSTITUTE, MARTIGNY, SWITZERLAND

ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE (EPFL), SWITZERLAND {apoorv.vyas, sibo.tong, bourlard}@idiap.ch, pdighe@apple.com

EXPERIMENT SET UP

Dataset: Switchboard (110h subset) **Acoustic Models**:

- DNN-HMM: Kaldi nnet1, 6 layers, 2048 neurons, 0.2 dropout
- CTC: 4 BLSTM layers, 320 cells, 0.2 dropout

Metric:

- Intersection-over-Union (IoU) for error localization
- Relative difference for WER estimation

RESULT: N-BEST VS DROPOUT

Figure 2: Comparing N-best list against the dropout samples for test utterance: *oh i see uh-huh*

- N-best list contains several outputs even when the best path is correct.
- Dropout samples contain the same output (high confidence).

RESULTS (ERROR LOCALIZATION)

ASR	S.L	S.L	S.L	S.L	S.L
System	[1-3]	[4-6]	[7-10]	[11 - Max]	[1-Max]
DNN-dev-Dr	0.78	0.68	0.55	0.42	0.55
DNN-dev-Nb	0.62	0.49	0.44	0.38	0.45
DNN- <i>dev</i> -Ka	0.79	0.67	0.56	0.42	0.54
DNN-test-Dr	0.83	0.59	0.55	0.42	0.59
DNN-test-Nb	0.66	0.51	0.45	0.39	0.50
DNN-test-Ka	0.82	0.56	0.51	0.41	0.58
CTC-dev-Dr	0.79	0.62	0.58	0.45	0.56
CTC-dev-Nb	0.51	0.46	0.42	0.36	0.41
CTC <i>-dev-</i> Ka	0.78	0.57	0.50	0.39	0.51
CTC-test-Dr	0.84	0.62	0.53	0.44	0.61
CTC-test-Nb	0.45	0.50	0.45	0.35	0.41
CTC-test-Ka	0.83	0.56	0.50	0.40	0.58

Table 1: Error Localization comparison using IoU metric

- Overall IoU of ~ 0.6 means significant number of predicted errors are accurate.
- IoU metric is much higher for shorter utterances.

RESULTS (WER ESTIMATION)

ASR	S.L	S.L	S.L	S.L	S.L
System	[1-3]	[4-6]	[7-10]	[11 - Max]	[1-Max]
DNN-test-Gt	35.5	28.8	25.1	22.3	23.3
DNN-test-Dr	33.2	31.0	25.2	21.5	22.7
DNN-test-Nb	73.6	42.1	30.2	13.7	19.7
CTC-test-Gt	30.6	31.2	25.3	23.3	24.0
CTC-test-Dr	34.4	35.5	29.7	23.9	25.2
CTC-test-Nb	93.1	49.0	34.3	15.9	22.7

Table 2: Results on estimating WER using dropout uncertainty. *S.L.* refers to sentence length. *Dr*: dropout estimate, *Nb*: N-best list estimate, and *Gt*: ground truth word error rate.

- WER on longer utterances.

Figure 3: Comparison between dropout and N-best list based WER estimation for CTC system. (a) Histogram of absolute difference between estimated WER and true WER. (b) Correlation between estimated WER and true WER.

CONCLUSIONS & FUTURE WORK

- model combination and for semi-supervised learning.

ACKNOWLEDGMENT

This research was supported by Swiss National Science Foundation project SHISSM, grant agreement 200021-175589, and the European Community H2020 SUMMA project No. 688139

• N-best estimation overestimates WER on short utterances and underestimates

• N-best list contains all different hypothesis thus cannot estimate WER as 0.

• All dropout hypotheses can be identical when model is confident.

• Variations in different hypotheses with dropout are often highly localized at certain word positions and depict locations of potential errors.

• Experiments with CTC and DNN-HMM acoustic models show that our approach accurately estimates word error rates and word confidences and is more robust to the utterance length, compared to lattice-based approaches.

• In future, we intend to use word-level predictive uncertainty in the output for