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- Goal: Reconstruct signal s based on measurements y by

solving variational inverse problem = innovation of the spline (jumps)
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- Assumption: s is sparse in a transform domain
(e.g. TV regularization)

- Contributions:
= Discretization of continuous-domain inverse problem

= Design of a multiresolution algorithm

- Key features:

= (General framework (choice of measurements and
regularization)

B-spline-based Discretization

= Exact discretization in the continuous domain

- Basis function: scaled
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= Well-conditioned optimization task — effective algorithms
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B-splines Bn,.x |

= Multiresolution approach — scalability

. = Compact support!: o7
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Continuous-Domain Inverse Problem

- Search space: splines  os;
on a uniform grid with o}

* Problem formulation: knot spacing h 0al
arg min ||v(f) — yl3 + AIDY{ M | (1) {ZCWNOW_M)}
f o7 0.1F
» )\ :regularization parameter . Discretized problem: B-splines for h=1
- Do : No-th order derivative —

generalized TV regularization

arg min |[He — y||? + A||Lc|1 (2)
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+ || - llm : sparsity-promoting norm
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. = Exact discretization!
. = Standard discrete convex problem with £1 regularization :

. = Good conditioning (compact support of B-splines)

Experimental Results

*No =2, M =10 measurements
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