Referential Vowel Duration Ratio as a Feature for Automatic Assessment of L2 Word Prosody Tsuneo Kato[†], Quy-Thao Truong[‡], Kohei Kitamura[†] and Seiichi Yamamoto[†] †Doshisha University and ‡Ecole Centrale de Nantes

1. Summary

- We propose Referential Vowel Duration Ratio (R-VDR), which explicitly quantifies correctness of English accents and rhythms, for automatic prosody assessment.
- The proposed method was evaluated with 910 utterances of 36 English words from English Read by Japanese (ERJ) corpus.
- The proposed method significantly improved subjectiveobjective score correlation from 0.30 to 0.38. (cf. Inter-rater correlation coefficient: 0.48)

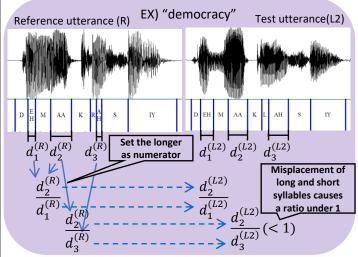
2. Background and Objective

- Background
- Automatic prosody assessment of L2 speech has been based mainly on fundamental frequency (F0) and energy contours.
- J. P. Arias et al., "Automatic intonation assessment for computer aided language learning", Sp. Com. 2010.
- J. Cheng, "Automatic assessment of prosody in high-stakes English tests", Interspeech 2011.
- Q. Truong, T. Kato, S. Yamamoto."Automatic assessment of L2 English word prosody using weighted distences of f0 and intensity contours", Interspeech 2018.
- Long and short syllables constitute the rhythm of English, a stress-timed language.
- Segmental duration of syllables or vowels should provide important information for assessing rhythm of speech.
- Pairwise Variability Index (PVI) E. Grabe and E. L. Low, 2002.

$$nPVI = \frac{100}{M-1} \sum_{i=1}^{M-1} \frac{|d_i - d_{i+1}|}{(d_i + d_{i+1})/2}$$

 $(d_i: duration of ith vowel segment, M: # of vowel segments)$

 PVI does not consider correctness of the contrast between long and short syllables.



- Objective
- Develop a metric having high subjective-objective correlation in prosody assessment based on segmental duration.

3. Referential Vowel Duration Ratio

- ◆ Referential Vowel Duration Ratio of Vowel Pair
- To score how correctly a speaker distinguishes stressed and unstressed syllables regardless of a speech rate, a vowel duration ratio is calculated on a pair of consecutive syllable nuclei referring to the pair produced by natives.
- The numerator and denominator switch according to a magnitude relation of durations between the two vowel segments in a native reference utterance.

$$r(i) = \begin{cases} d_{i+1}^{(L2)}/d_i^{(L2)} & \text{if } d_i^{(R)} \le d_{i+1}^{(R)} \\ d_i^{(L2)}/d_{i+1}^{(L2)} & \text{if } d_i^{(R)} > d_{i+1}^{(R)} \end{cases}$$
$$= \left(d_{i+1}^{(L2)}/d_i^{(L2)} \right)^{sgn\left(d_{i+1}^{(R)} - d_i^{(R)}\right)}$$

◆ Geometric mean of ratios on log scale (arithmetic mean of log ratios)

$$G = \frac{1}{M-1} \sum_{i=1}^{M-1} sgn \left(\ln \frac{d_{i+1}^{(R)}}{d_i^{(R)}} \right) \ln \frac{d_{i+1}^{(L2)}}{d_i^{(L2)}}$$

Weighted mean with the ratio of a native reference utterance

$$G^{w} = \sum_{i=1}^{M-1} \left(\ln \frac{d_{i+1}^{(R)}}{d_{i}^{(R)}} \ln \frac{d_{i+1}^{(L2)}}{d_{i}^{(L2)}} \right) / \sum_{i=1}^{M-1} \left| \ln \frac{d_{i+1}^{(R)}}{d_{i}^{(R)}} \right|$$

4. Experiments

- Data
- Test data:

910 word utterances from English Read by Japanese corpus.

Subjective assessment scores:

Rated by two native English teachers. Inter-rater corr.: 0.480

Reference data:

504 English native utterances from online dictionaries.

- Conditions
- Baseline #1: F0 & intensity contours comparison (Cheng IS2011)
- Baseline #2: Improved contours comparison (Truong IS2018)
- Subjective-objective correlations

Method	F0	Int.	Dur.	Corr.
Baseline #1	•	•		0.265
Baseline #2	•	•		0.304
nPVI			•	0.005
Baseline #2 + nPVI	•	•	•	0.303
Arithmetic mean of log ratios			•	0.191
Baseline #2 + arithmetic mean	•	•	•	0.346
Weighted mean of log ratios			•	0.266
Baseline #2 + weighted mean	•	•	•	0.381
	Dart of	word li	et for acc	occmont

Weighted mean of the ratios

Part of word list for assessment

	.0							
.1	U		0	0	0	980	0	8
200	0	0	0	8		1		ï
WA.R-VDR	0	BOGII						200
-R-	8	8	0	8	0	8	ě	8
≥ -2 ¢	0	0	8	8	8	8	0	
-4	0	0						
-6								
1		2		3		4		5
Mean subjective score								

accessory	dessert	
kangaroo	percent	
technology	spaghetti	
escalator	volunteer	

5. Future work

- Evaluating L2 English speech corpora other than ERJ corpus.
- From referring to L1 speech to referring to an accent dictionary.
- From evaluating isolated word utterances to sentences.