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e Reconstruction of a target trajectory from noisy position measurements arises in many
modern applications to track objects, people, or vehicles/robots

e Conventional tracking and smoothing approaches assume that targets move according to
a given kinematic model and make only limited maneuvers

e Design and assessment of a maximum likelihood trajectory estimation algorithm for
targets in arbitrary mixed stationary/moving conditions

e Online smoothing of estimated trajectory by exploiting the theory of Bézier curves

e [arget starts with unknown initial position p; and velocity v

e Piecewise-linear kinematic model to approximate arbitrary trajectories over sliding obser-
vation windows [ty tx|, K > 1
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with 7" measurement interval and ;. position increment wrt (k — 1)-th position

e Assuming target is stationary up to an unknown time instant k = j
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e Problem: estimate pj, v, 7 and reconstruct target trajectory over time

1. ML estimation of unknown py, v and time instant 7 when target starts to move

2. Trajectory reconstruction based on the theory of Bézier curves for online smoothing
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Sliding-window approach with marked midpoints (blue circles) and control points of the Bézier curves (red squares)

oY = |y, y» --- Ykl available noisy position estimates in current processing window

e assuming Gaussian-distributed noise 1, ~ N (0, 02Id) iIn d-dimensional space
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Theorem 1. The ML estimates of the unknown kinematic parameters are
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Result: |p, v| available in closed-form, j simple search among K values!
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e Problem: resolve time ambiguity at overlap points and reconstruct continuous trajectory

e Proposed approach: join mid-points through Bézier curves with control points

B(t)=Y PB/({t)=>» P (?) ti(1—t)"" ¢te0,1] (n— 1 control points)
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Example: Cubic Bézier curve
Bt)=(1—t)°’Py+3t(1 —t)’P, +3t°(1 — )P, +t°P;, t € 0,1]

(P, P5): control points; (P, P3): fixed points

e Bézier curve sampling: minimum-distance association with ML estimate trajectory points

(B(t) — P)B'(t) =0 | (L to tangent line)

where derivative B'(t) =n > (P, — P)B!
i=1

Simulation Results
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e Proposed approach provides better accuracy than KF, while introducing only a small
delay in the online processing

e Proposed approach also outperforms RTS, despite only a fraction of the whole data is
used for smoothing in each window

e Possible extension to more complex patterns of moving/stationary conditions in the pro-
cessing window, possibly under more general observations error model

e Application to AOA-based localization in presence of multipath propagation [6]
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