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•Reconstruction of a target trajectory from noisy position measurements arises in many
modern applications to track objects, people, or vehicles/robots

•Conventional tracking and smoothing approaches assume that targets move according to
a given kinematic model and make only limited maneuvers

•Design and assessment of a maximum likelihood trajectory estimation algorithm for
targets in arbitrary mixed stationary/moving conditions

•Online smoothing of estimated trajectory by exploiting the theory of Bézier curves

In a nutshell

•Target starts with unknown initial position p0 and velocity v

•Piecewise-linear kinematic model to approximate arbitrary trajectories over sliding obser-
vation windows [t0, tK], K ≥ 1

pk = pk−1 + δkvT k = 1, . . . , K

with T measurement interval and δk position increment wrt (k − 1)-th position

•Assuming target is stationary up to an unknown time instant k = j

pk = p0 + vTδ>(j)ak

where δ(j) =

[
0j−1

1K−j+1

]
gives trajectory structure and ak =

[
1k

0K−k

]
•Problem: estimate p0, v, j and reconstruct target trajectory over time

Problem formulation

1. ML estimation of unknown p0, v and time instant j when target starts to move

2. Trajectory reconstruction based on the theory of Bézier curves for online smoothing
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Proposed two-step approach

•Y = [y1 y2 · · · yK] available noisy position estimates in current processing window

• assuming Gaussian-distributed noise nk ∼ N (0d, σ
2Id) in d-dimensional space

yk = Θwk + nk

with Θ = [p0 v] unknown kinematic parameters and wk =

[
1

Tδ>ak

]
Theorem 1.The ML estimates of the unknown kinematic parameters are

[p̂0 v̂] = Y B(̂)

where B(̂) = 1
γ(̂)

 T (2K−2̂+3
3 11×K −α>(̂)

)
2K

(K−̂+1)(K−̂+2)α
>(̂)− 11×K

>, α(j) = [0>j−1 1 2 · · · (K− j+ 1)]>

and γ(̂) = T
6 [K(4K − 4̂ + 6)− 3(K − ̂ + 1)(K − ̂ + 2)]

̂ = arg min
j∈{1,...,K}

K∑
k=1

‖yk − Y H(j)uk(j)‖2

with H(j)=[1K Tα(j)] and uk(j) = 1
γ(j)

[
T (2K−2j+3)

3 − Tδ>(j)ak
2Kδ>(j)ak

(K−j+1)(K−j+2) − 1

]

Result: [p̂0 v̂] available in closed-form, ̂ simple search among K values!

1. ML Estimation of kinematic parameters

•Problem: resolve time ambiguity at overlap points and reconstruct continuous trajectory

•Proposed approach: join mid-points through Bézier curves with control points

B(t) =

n∑
i=0

PiB
n
i (t) =

n∑
i=0

Pi

(
n

i

)
ti(1− t)n−i, t ∈ [0, 1] (n− 1 control points)

Example: Cubic Bézier curve

B(t) = (1− t)3P0 + 3t(1− t)2P1 + 3t2(1− t)P2 + t3P3, t ∈ [0, 1]

(P1, P2): control points; (P0, P3): fixed points

•Bézier curve sampling: minimum-distance association with ML estimate trajectory points

(B(t)− P )B′(t) = 0 (⊥ to tangent line)

where derivative B′(t) = n
n∑
i=1

(Pi+1 − Pi)Bn−1
i

2. Trajectory smoothing via Bézier curves

Simulation Results

X accuracy of 1-2 m for small to moderate
localization errors

X good performance even in case of very large
position errors (σ = 10)

mean error
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Measurements

RTS smoothing trajectory reconstruction

Bezier curve with minimum-distance sampling

Kalman Filter trajectory reconstruction
X proposed Bézier reconstruction outperforms

RTS smoother, with less measurements

XKF less accurate due to limited number of
observations

X accuracy improvement of 21% wrt RTS and
58% wrt KF

Real Experiments with Quadcopters

X excellent ability to follow quadcopter’s
complex helical trajectory

X correct handling of points where drone was
hovering (quasi-stationary condition)

XBézier smoothing improves RMSE, espe-
cially close to aggressive maneuvers
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Bezier curve with minimum-distance sampling

ML estimation without smoothing

Performance assessment

•Proposed approach provides better accuracy than KF, while introducing only a small
delay in the online processing

•Proposed approach also outperforms RTS, despite only a fraction of the whole data is
used for smoothing in each window

•Possible extension to more complex patterns of moving/stationary conditions in the pro-
cessing window, possibly under more general observations error model

•Application to AOA-based localization in presence of multipath propagation [6]

Conclusions and future work
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