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Introduction

PROBLEM STATEMENT

•multi-talker distant conversational speech recognition

• competing speakers, reverberation and background noise pose serious
challenges for ASR systems

PROPOSED APPROACH

Improve multi-talker distant ASR performance by suppressing inter-
fering speakers using a neural network supported automatic gain
control (AGC) mechanism.

CONTEXT

CHiME-5 challenge: distant multi-microphone conversational speech
recognition challenge in everyday home environments [1].
Corpus description:
- 20 dinner party recordings (aprox. 2 hours each)
- 4 participants and 3 locations (kitchen, dining and living room)
- 6 x 4-channels Microsoft Kinect recording devices (array set)
- in-ear binaural microphones (worn set)
- recording devices were not synchronized

• single (reference) device track and multiple device track

• speaker overlap is a major issue for CHiME-5

– amount of speech frames with more than one active speaker at the
same time: 24% (train), 42% (dev)

– traditional source separation methods were ineffective (moving
speakers, reverberation and background noise)

– speaker-dependent systems exploited the speaker diarisation infor-
mation provided in the challenge [2]

Methods

HARD OVERLAP SUPPRESSION (HOS)

•has used the baseline speaker diarisation to detect the segments where
only the target speaker is active

•binary masks were computed every 16-ms
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Figure 1: Example of suppressing interfering speakers using HOS and AGC.
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Figure 2: Block diagram of AGC approach for suppressing interfering speakers.

•DNN
– frame-wise speaker classifier, 3 hidden layers, 4 output nodes
– training data: single speaker data according to transcription
– dominant speaker was chosen using maximum likelihood criterion
•postfiltering: 11 taps median filter, double exp. moving average
• single-channel enhancement only

DATA SELECTION (DTS)

• random selection of array devices for data extraction is not optimal
• carefully selected devices may reduce interfering speakers’ effect
• solution: choose the array device whose data has the strongest corre-

lation with the in-ear recording of target speaker
•metric/criterion: normalized cross-correlation/max

SPEAKER-DEPENDENT GEV (SDGEV) [2]

• speaker adaptive maximum SNR beamforming (generalized eigen-
value beamformer, GEV), 4 channels
•neural network to estimate speech and noise statistics (masks)

•GMM based speaker-dependent mask adaptation to alleviate the effect
of interfering speakers

Evaluation

•Data
– ASR training: worn + 100k (randomly chosen) array segments
– ASR testing: development set of CHiME-5, pre-enhanced using a

weighted delay-and-sum beamformer ( BeamformIt, BF)
– enhancement: baseline (unprocessed), HOS, AGC or DTS
•Front-end: 40-dims MFCCs for acoustic model training
•Acoustic model

– TDNN: 8 layers, lattice-free MMI
– CNN-BLSTM: 2 layers 2D CNN, 3 layers BLSTM
∗data cleaning, i-vectors (100), speed perturbation (3-folds)

Results

Table 1: WER(%) using TDNN AM (single device track).

Train data
Enhancement

BF +HOS +AGC
Baseline 88.3 98.5 88.2

AGC 87.9 97.1 86.6
HOS 87.2 85.0 85.6

Table 2: WER(%) using CNN-BSTM AM trained with unprocessed data.

Track
Enhancement

BF (A) +AGC (B) A+B
Single 74.0 74.3 71.8
DTS 71.6 71.1 68.9

Table 3: WER(%) using CNN-BSTM AM trained with SDGEV enhanced data (single array).

Track
Enhancement

SDGEV (C) +AGC (D) C+D
Single 64.9 65.0 63.7

Conclusions

•DNN-based AGC enhancement was proposed for reducing the effect
of speaker overlap in CHiME-5
•Experiments have shown that the proposed approach yields WER re-

ductions between 2% and 3% absolute on the dev set of CHiME-5.
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