MULTI-FRAME SUPER-RESOLUTION FOR TIME-OF-FLIGHT IMAGING

Fengqiang Li^{1,*}, Pablo Ruiz², Oliver Cossairt¹, Aggelos K. Katsaggelos² ¹Department of Computer Science, ²Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208 *Email: fengqiang.li@u.northwestern.edu

INTRODUCTION & MOTIVATION

Time-of-flight (ToF) camera is an active 3D imaging technique which measures the phase delay between the reflection s(t) and the reference r(t) for depth estimation.

Why ToF camera for 3D imaging:

□ Large baseline for comparable depth resolution (Triangulation based 3D imaging e.g. structure light camera).

Compact size for ToF cameras.

Problems with current ToF camera and our motivation:

□ Improve the lateral resolution of ToF camera measurements.

MULTI-FRAME SR FOR TOF IMAGING

Linear forward model for ToF:

- ToF camera outputs amplitude (a) and phase/depth (ϕ).
- Assume two ToF pixels p_1 and p_2 with corresponding amplitude and phase of (a_1, ϕ_1) and (a_2, ϕ_2) .
- Represent ToF output and the object as a phasor

$$y(p) = a_p e^{i\phi_p}$$

$$x(P) = A_P e^{i\Phi_P}$$

where $y \in \mathbb{C}^{M \times N}$ is the low resolution (LR) ToF measurement, $x \in \mathbb{C}^{kM \times kN}$ is the high resolution depth image to be reconstructed, k is the magnification factor, p is one pixel of the LR ToF sensor, and *P* is one pixel of the HR reconstruction.

ToF depth measurement

> Proposed method

Multi-frame SR for ToF imaging:

• A sequence of L LR frames acquired by ToF camera as column vectors

 $\boldsymbol{Y}_1, \boldsymbol{Y}_2, \dots, \boldsymbol{Y}_L \in \mathbb{C}^{MN \times 1}$

- Assume the HR frame we want to recover (column vector) is $X \in \mathbb{C}^{k^2 M N \times 1}$
- We perform SR on the real and imaginary parts separately $\mathbf{y}_l = \mathbf{D}\mathbf{W}_l\mathbf{x} + \mathbf{n}_l$ $y_l \in \{ \text{Re}(Y_l), \text{Im}(Y_l) \}$ $\mathbf{x} \in \{\operatorname{Re}(X), \operatorname{Im}(X)\}$

where $D \in \mathbb{R}^{MN \times k^2 MN}$ is a known downsampling matrix. $W_l \in$ $\mathbb{R}^{k^2 MN \times k^2 MN}$ is a warping matrix which models the movement between the HR image **x** and the LR version of *l*-th frame y_l . $n_l \in$ $\mathcal{N}(\mathbf{0}, \beta^{-1}\mathbf{I})$ is additive noise term. We assume the warping matrices are not known and they are estimated jointly with the HR image.

BAYESIAN MODELING

• The probability distribution on observations is as

$$p(\mathbf{y}|\mathbf{x}, \mathbf{W}, \beta) \propto \beta^{\frac{LMN}{2}} \exp\left\{-\frac{\beta}{2} \sum_{l=1}^{L} ||\mathbf{y}_l - \mathbf{D}\mathbf{W}_l \mathbf{x}||^2\right\}$$

where $\mathbf{y} = \mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_L$ and $\mathbf{W} = \mathbf{W}_1, \mathbf{W}_2, \dots, \mathbf{W}_L$

• The prior is as

 $p(\mathbf{x}|\alpha) \propto \alpha^{NM/2} \exp\{-\alpha TV(\mathbf{x})\}$

where $\text{TV}(\mathbf{x}) = \sum_{j=1}^{MN} \sqrt{\left(\Delta_j^h \mathbf{x}\right)^2 + \left(\Delta_j^v \mathbf{x}\right)^2}$.

• The posterior distribution of the un-knowns given the observations is as

$$p(\mathbf{x}, \mathbf{W}, \alpha, \beta | \mathbf{y}) = \frac{p(\mathbf{y} | \mathbf{W}, \beta) p(\mathbf{x} | \alpha) \Gamma}{p(\mathbf{x} | \alpha)}$$

where $p(W_l)$, $p(\alpha)$, and $p(\beta)$ are non-informative flat priors.

• Since we cannot explicitly calculate p(y), we do not have access to the posterior distribution. We apply the variational Bayesian analysis to approximate posterior distribution $p(\Theta|\mathbf{y})$ by a tractable distribution $q(\Theta)$. This approximating distribution is estimated by minimizing the Kullback-Leibler (KL) divergence between $p(\Theta | \mathbf{y})$ and $q(\Theta)$ as

$$p(\mathbf{x}, \mathbf{W}, \alpha, \beta | \mathbf{y}) \approx q(\mathbf{x}) \prod_{l=1}^{L} q(\mathbf{I})$$

• Finally, the HR image **x** is estimated as the mean of q(**x**).

 $\prod_{l=1}^{L} \mathbf{p}(\boldsymbol{W}_l) \mathbf{p}(\alpha) \mathbf{p}(\beta)$ $\mathbf{y}(\mathbf{y})$

 $(\boldsymbol{W}_l)q(\alpha)q(\beta)$

SIMULATION

- Warping matrix is acquired by shifting and rotating
- Gaussian noise of 30 dB is added

REAL EXPERIMENT

- Texas Instruments ToF camera: 320×240 pixels

• GT: 1154×912 pixels. LR measurements: 288×231 pixels

• 25 frames acquired by ToF camera are used for reconstruction