

Speaker Diarisation using 2D Self-attentive Combination of Embeddings

Guangzhi Sun, Chao Zhang and Phil Woodland

May 16, 2019

Cambridge University Engineering Department

Contents

- Introduction and motivation.
- Model overview and self-attentive structure
- 2D self-attentive combination approaches
- Modified penalty term
- Experiments and results
- Conclusions

Introduction

Speaker Diarisation: Who Spoke When

- Segmenting audio into speaker-homogeneous intervals.
- Clustering them into groups corresponding to the same speaker

Importance of Speaker Embeddings

- · A fixed-length vector representing the speaker of each interval
- Clustering is performed on speaker embeddings
- The use of embeddings helps other speech and language tasks

Types of Speaker Embeddings

- i-vectors: Factor analysis in the total variability space
- d-vectors: Embeddings extracted using deep neural networks

Introduction

Objectives of Model Combination

- Single networks have different strengths and weaknesses
- Take advantage of the complementarity among embeddings

The Advantages of Multi-head Self-attentive Structure

- · Dynamic combinations depending on the input
- Multiple annotation vectors to extract diverse characteristics

Proposed Methods

- 2D self-attentive combination across time and systems
- Modified penalty term to produce diverse annotation vectors

Model Overview

イロト イポト イヨト イヨ

Self-attentive Layer Structure

2D Self-attentive Topologies

Simultaneous Combination Architecture

▲□▶▲圖▶▲圖▶▲圖▶ = のQ@

2D Self-attentive Topologies

Consecutive Combination Architecture

Two Types of the Second Combination Stage

Type 1 combination

- Weighted average of the segment-level embeddings, **E**_{*i*}.
- Multiple output heads from the same system share the same weight in each annotation vector.

Type 2 combination

- Weighted average of the heads in the embeddings, **e**_{ij}.
- Different heads from the same system may have different weight in the annotation vector.

The Modified Penalty Term

Original Definition

$$\boldsymbol{P} = \mu \Big(\sum_{i=1}^{h} (\boldsymbol{a_i}^T \boldsymbol{a_i} - 1)^2 + \sum_{i,j,i \neq j}^{h} (\boldsymbol{a_i}^T \boldsymbol{a_j})^2 \Big),$$

Penalty Term Functionality

- It is to be minimised together with the cross-entropy loss function.
- The first term forces each annotation vector to be one-hot.
- The second forces different annotation vectors to be orthogonal.

The Modified Penalty Term

Why to Adopt the Modification

- The penalty term was originally designed for sentence embedding extraction. Focusing on as few words as possible.
- Unweighted mean of frame-level embeddings showed its ability to capture speaker characteristics.

Modified Term

$$\boldsymbol{P} = \mu \Big(\sum_{i=1}^{h} (\boldsymbol{a_i}^T \boldsymbol{a_i} - \lambda)^2 + \sum_{i,j,i \neq j}^{h} (\boldsymbol{a_i}^T \boldsymbol{a_j})^2 \Big),$$

where λ 's are a set of hyper-parameters that controls the smoothness of the annotation vectors.

Penalty Term Modification

Shift of the Optimal Point with Different Diagonal Value λ

Penalty Term Modification

Shift of the Optimal Point with Different Diagonal Value λ

Penalty Term Modification

Shift of the Optimal Point with Different Diagonal Value λ

▲□▶▲圖▶▲圖▶▲圖▶ ■ のQの

Experimental Setup

Data

• The Augmented Multiparty Interaction (AMI) meeting corpus.

	Meetings	Speakers	
Train	135	149	
Dev	14	17 (4 seen in Train)	
Eval	12	12 (0 seen in Train)	

A D M A A A M M

Systems for Combination (k=2)

- Time-delay Neural Network (TDNN).
- High-order Recurrent Neural Network (HORNN).

Experimental Setup

Diarisation Pipeline

- Implemented with HTK 3.5.1 and PyHTK
- 40d filter bank features.
- 2s sliding segment with 1s overlap is used.
- Segment-level embeddings clustered using spectral clustering.
- Choose the mode among the segments in each utterance.
- Report Speaker Error Rate (SER) on dev and eval sets.

Baseline Systems

• Statistical pooling layer which calculates the mean and standard deviation across frame-level embeddings.

Speaker Error Rate for Separate Systems

	Dataset	Mean+std. deviation	Attention (original)	Attention (modified)
HORNN	Dev	21.0%	16.7%	13.4%
	Eval	23.7%	20.6%	16.0%
TDNN	Dev	17.5%	15.0%	13.4%
	Eval	19.2%	15.0%	14.8%

 21% relative SER reduction in HORNN and 6% relative SER reduction in TDNN by introducing the modified penalty term.

Experimental Results

Effects of the Modified Penalty Term

Comparisons of Different Combination Methods

Systems	#Params.	Dev	Eval
d-vector TDNN	1.8M	13.4%	14.8%
d-vector HORNN	0.3M	13.4%	16.0%
c-vector Simult.	2.0M 2.5M	12.7% 13.2%	16.3% 13.5%
c-vector Consec. 1 c-vector Consec. 2	2.0M	13.2% 12.2%	13.5% 13.0%

• A further 10% relative SER reduction was found using the second type of the consecutive combination.

Conclusions

Main Contributions Include

- A novel embedding extraction approach using a multi-head 2D self-attentive structure.
- A modified penalisation term to increase the diversity among the multi-head d-vectors.
- The modified penalty term achieved a 21% rel. SER reduction for HORNN system and a 6% rel. SER reduction for TDNN system.
- A further 10% rel. SER reduction was achieved by using 2D consecutive combination method.

Thanks for listening!

