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Introduction

Speaker Diarisation: Who Spoke When

• Segmenting audio into speaker-homogeneous intervals.
• Clustering them into groups corresponding to the same speaker

Importance of Speaker Embeddings

• A fixed-length vector representing the speaker of each interval
• Clustering is performed on speaker embeddings
• The use of embeddings helps other speech and language tasks

Types of Speaker Embeddings

• i-vectors: Factor analysis in the total variability space
• d-vectors: Embeddings extracted using deep neural networks
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Introduction

Objectives of Model Combination

• Single networks have different strengths and weaknesses
• Take advantage of the complementarity among embeddings

The Advantages of Multi-head Self-attentive Structure

• Dynamic combinations depending on the input
• Multiple annotation vectors to extract diverse characteristics

Proposed Methods

• 2D self-attentive combination across time and systems
• Modified penalty term to produce diverse annotation vectors
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Model Overview
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Self-attentive Layer Structure
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2D Self-attentive Topologies

Simultaneous Combination Architecture

Simultaneous Self-attentive Layer
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2D Self-attentive Topologies

Consecutive Combination Architecture

Self-attentive Layer over Models
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Two Types of the Second Combination Stage

Type 1 combination

• Weighted average of the segment-level embeddings, Ei .
• Multiple output heads from the same system share the same

weight in each annotation vector.

Type 2 combination

• Weighted average of the heads in the embeddings, eij .
• Different heads from the same system may have different weight

in the annotation vector.
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The Modified Penalty Term

Original Definition

P = µ
( h∑

i=1

(ai
T ai − 1)2 +

h∑

i,j,i 6=j

(ai
T aj)

2
)
,

Penalty Term Functionality

• It is to be minimised together with the cross-entropy loss function.
• The first term forces each annotation vector to be one-hot.
• The second forces different annotation vectors to be orthogonal.
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The Modified Penalty Term

Why to Adopt the Modification

• The penalty term was originally designed for sentence
embedding extraction. Focusing on as few words as possible.

• Unweighted mean of frame-level embeddings showed its ability
to capture speaker characteristics.

Modified Term

P = µ
( h∑

i=1

(ai
T ai − λ)2 +

h∑

i,j,i 6=j

(ai
T aj)

2
)
,

where λ’s are a set of hyper-parameters that controls the
smoothness of the annotation vectors.
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Penalty Term Modification

Shift of the Optimal Point with Different Diagonal Value λ

P3
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Experimental Setup

Data
• The Augmented Multiparty Interaction (AMI) meeting corpus.

Meetings Speakers

Train 135 149
Dev 14 17 (4 seen in Train)
Eval 12 12 (0 seen in Train)

Systems for Combination (k=2)

• Time-delay Neural Network (TDNN).
• High-order Recurrent Neural Network (HORNN).

15/21



Experimental Setup

Diarisation Pipeline

• Implemented with HTK 3.5.1 and PyHTK
• 40d filter bank features.
• 2s sliding segment with 1s overlap is used.
• Segment-level embeddings clustered using spectral clustering.
• Choose the mode among the segments in each utterance.
• Report Speaker Error Rate (SER) on dev and eval sets.

Baseline Systems

• Statistical pooling layer which calculates the mean and standard
deviation across frame-level embeddings.
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Experimental Results

Speaker Error Rate for Separate Systems

Dataset Mean+std.
deviation

Attention
(original)

Attention
(modified)

HORNN Dev 21.0% 16.7% 13.4%
Eval 23.7% 20.6% 16.0%

TDNN Dev 17.5% 15.0% 13.4%
Eval 19.2% 15.0% 14.8%

• 21% relative SER reduction in HORNN and 6% relative SER
reduction in TDNN by introducing the modified penalty term.
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Experimental Results

Effects of the Modified Penalty Term
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Experimental Results

Comparisons of Different Combination Methods

Systems #Params. Dev Eval

d-vector TDNN 1.8M 13.4% 14.8%
d-vector HORNN 0.3M 13.4% 16.0%

c-vector Simult. 2.0M 12.7% 16.3%
c-vector Consec. 1 2.5M 13.2% 13.5%
c-vector Consec. 2 2.0M 12.2% 13.0%

• A further 10% relative SER reduction was found using the
second type of the consecutive combination.
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Conclusions

Main Contributions Include
• A novel embedding extraction approach using a multi-head 2D

self-attentive structure.
• A modified penalisation term to increase the diversity among the

multi-head d-vectors.
• The modified penalty term achieved a 21% rel. SER reduction for

HORNN system and a 6% rel. SER reduction for TDNN system.
• A further 10% rel. SER reduction was achieved by using 2D

consecutive combination method.
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Thanks for listening!
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