

Fast Compressive Sensing Recovery Using Generative Models with Structured Latent Variables

Shaojie (Kyle) Xu, Sihan Zeng Prof. Justin Romberg Georgia Institute of Technology

Agenda

- Solve inverse problems with priors
- Incorporate generative models into alternating direction method of multipliers (ADMM) framework to inverse problem solving
- Exploit the structure in InfoGAN's latent variable space
- Demonstrate the improvement of the proposed algorithm on MNIST and Celeb-A datasets

Solving Inverse Problems with Learned Prior

Applying ADMM to Inverse Problems

J(s) is implicitly formed during the training of the denoiser

Generative Model with Structured Latent Variable Space

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel, "Infogan: Interpretable representation learning by information maximizing generative adversarial nets," in *Advances in neural information processing systems*, 2016, pp. 2172–2180.

InfoGAN MNIST Examples

InfoGAN Generated Images

- **c** contains one categorical variable and two continuous variables
- Each row corresponds to one categorical code
- Each column corresponds to one 2D continuous code

Fast CS recovery using generative models

Train a generative model $G_{gen}(\cdot)$ on the dataset *Method I:*

Generate random latent variable zs following its distribution.

Generate random noise ϵ according to some distribution.

Construct noisy signals \tilde{x} s such that $\tilde{x} = G_{qen}(z) + \epsilon$

Train a projector network $G_{proj}(\cdot)$ that maps \tilde{x} to z

Method II:

Draw samples x from the training set

Generate random noise ϵ according to some distribution.

Construct noisy signals \tilde{x} s such that $\tilde{x} = x + \epsilon$

Train a projector network $G_{proj}(\cdot)$ such that $G_{gen}(G_{proj}(\cdot))$ maps \tilde{x} to x. (G_{gen} is fixed)

For signal recovery:

Given compression matrix Φ , compressed measurements ywhile Stopping criteria not met **do**

$$\begin{aligned} \boldsymbol{x}^{(k+1)} &= \left(\boldsymbol{\Phi}^T \boldsymbol{\Phi} + \rho \mathbf{I}\right)^{-1} \left(\boldsymbol{\Phi}^T \boldsymbol{y} + \rho(G_{gen}(\boldsymbol{z}^{(k)}) - \boldsymbol{\mu}^{(k)})\right) \\ \boldsymbol{z}^{(k+1)} &= G_{proj}(\boldsymbol{x}^{(k+1)}) \\ \boldsymbol{\mu}^{(k+1)} &= \boldsymbol{\mu}^{(k)} + \boldsymbol{x}^{(k+1)} - G_{gen}(\boldsymbol{z}^{(k)}) \\ \text{end while} \end{aligned}$$

Testing on MNIST Digits and Celeb-A Database

Original DAE TV GD-DCGAN Proposed (DCGAN) Proposed (InfoGAN)

Compression Ratio	DAE	F-CSRG with DCGAN	F-CSRG with InfoGAN
4x	2.20/98.2%	2.25/98.3%	2.68 / 97.7%
8x	2.54/97.8%	2.72/97.3%	3.06/97.2%
16x	3.23 / 94.8%	3.70/91.7%	3.79/93.8%
32x	5.13 / 73.5%	5.86 / 66.4%	5.37 / 77.4%
64x	7.33/41.8%	7.91 / 36.2%	7.43 / 48.0%

Original

DAE

Proposed (DCGAN)

Proposed (InfoGAN)

4x Compression

8x Compression

16x Compression

9

Theoretical Background

Theorem 1.1. Let $G : \mathbb{R}^k \to \mathbb{R}^n$ be a generative model from a *d*-layer neural network using ReLU activations. Let $A \in \mathbb{R}^{m \times n}$ be a random Gaussian matrix for $m = O(kd \log n)$, scaled so $A_{i,j} \sim N(0, 1/m)$. For any $x^* \in \mathbb{R}^n$ and any observation $y = Ax^* + \eta$, let \hat{z} minimize $||y - AG(z)||_2$ to within additive ϵ of the optimum. Then with $1 - e^{-\Omega(m)}$ probability,

$$\|G(\hat{z}) - x^*\|_2 \le 6 \min_{z^* \in \mathbb{R}^k} \|G(z^*) - x^*\|_2 + 3\|\eta\|_2 + 2\epsilon.$$

- Solving in the compressed domain (LHS) has comparable performance as solving in the uncompressed domain (RHS).
- Number of measurements required is linear to the dimension of the latent variable space (k).

Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G Dimakis, "Compressed sensing using generative models," in International Conference on Machine Learning, 2017, pp. 537–546.

Theoretical Background

 \mathbf{C} : controllable variable of size k_c ; controls major variations in the generated images

I: random Gaussian of size k_r ; adds fine details in the generated images

$$k_c \ll k_c + k_r = k$$

Lose details when the number of compressed measurements is extremely limited.

Conclusion

- Strong prior knowledge captured by the generative models allows higher reduction in the number of required compressed measurements.
- Apply **ADMM** framework to inverse problem solving leads to more freedom in algorithm design.
- Train a **projector network** that maps signals to the latent variable space to **accelerate** the recovery.
- Structures in the latent variable space play an important role in increasing the robustness of the recovery algorithm.