
Variable forward(const Variable& x) { 
auto hidden = matmul(weights[0], x); 
hidden = max(hidden, 0); // ReLU 
return matmul(weights[1], hidden); 

} 
Variable criterion(const Variable& yhat, const Variable& y) { 

auto probs = sigmoid(yhat); 
 return -(y * log(probs) + (1 - y) * log(1 - probs)); 

} 
for (const auto& xy : trainSet) { 
 criterion(forward(xy[0]), xy[1]).backward(); 
 for (auto& w : weights) { 
  w -= lr * w.grad(); 
  w.zeroGrad(); // Set gradient to zero 
 } 

} 
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INTRODUCTION 

• wav2letter++ is a fast, open-source deep learning speech recognition framework. 

‣ Written entirely in C++ and backed by the efficient ArrayFire tensor library 

‣ Scales linearly to 64 GPUs for models with 100+ million parameters. 

‣ Over 2x faster in some cases than other optimized frameworks for training end-to-

end neural networks for speech recognition.

DESIGN 

• The design of wav2letter++ is motivated by three requirements: 
‣ It must efficiently train models on datasets containing thousands of hours of speech, 

‣ make expressing and incorporating new network architectures, loss functions, and 
other operations easy, and 

‣ make the path from model research to deployment straightforward, requiring as 
little new code as possible while maintaining the flexibility needed for research.
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• A standalone machine learning library that: 

‣ extends ArrayFire with autograd, NN modules, distributed training, etc. to support 
neural network training. 

‣ extends the core ArrayFire CUDA back-end with more efficient cuDNN operations 
including convolutions and RNN operations. 

• wav2letter++ library is built on top of flashlight. 

Data Preparation and Feature Extraction

• wav2letter++ supports multiple audio file formats (e.g. wav, flac... / mono, stereo / int, 

float) and several feature types including raw audio, a linearly scaled power spectrum, 
log-Mels (MFSC) and MFCCs.  

• Data loading computes features on the fly prior to each network evaluation. 
• To make this efficient while training models, we load the audio and compute the features 

asynchronously and in parallel with inference.
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Example: one layer MLP trained with binary cross-entropy and SGD, using autograd

Models

• We support several end-to-end sequence models with loss functions including 

Connectionist Temporal Classification (CTC) [6], wav2letter's AutoSegmentationCriterion 
(ASG) criterion [2], and sequence-to-sequence models with attention (seq2seq). 

• Adding a new sequence criteria is particularly easy; ASG and CTC are already efficiently 
implemented in C++. 

• Since the flashlight library we use provides dynamic graph construction and automatic 
differentiation, building new layers or other primitive operations requires little effort.

Training and Scale

• Flexibility for the user to experiment with different features, architectures. and optimization 

parameters. Hackable to the core. 
• Training can be run in three modes: 

‣ train (flat-start training) 
‣ continue (continuing with a checkpoint state) 
‣ fork (for e.g. transfer learning) 

• We scale wav2letter++ to larger datasets with data-parallel, synchronous and 
asynchronous SGD and provide a simple framework with which to create custom 

distributed optimization schemes.

Decoding

• The wav2letter++ decoder is performance-optimized beam-search decoder which: 
‣ supports any type of language model which exposes the interface required by our 

decoder including n-gram LMs and any other stateless parametric LM. 
‣ supports online decoding, where emissions are streamed into the decoder.

ArrayFire Tensor Library
• ArrayFire [1] is a highly-optimized tensor library that supports CPU, GPU, and OpenCL 

backends. 
• Uses just-in-time (JIT) code generation to combine series of simple operations into a 

single kernel call.  
• Less verbose and relies on fewer C++ idiosyncrasies. 

Flashlight Machine Learning Library 

ArrayFire 

Tensor Library
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NN Accelerator Package

NCCL, MPI 
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Decoding Speed and Throughput

Training Performance by Component

Distributed training performance on the WSJ Dataset.
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Name Language Model(s) ML Syst.

Kaldi C++, Bash HMM/GMM -
DNN/LF-MMI -

ESPNet Python, CTC, seq2seq, PyTorch,
Bash hybrid Chainer

OpenSeq2Seq Python, C++ CTC, seq2seq TensorFlow
wav2letter++ C++ CTC, seq2seq, ArrayFire

ASG

Table 1. Major open-source speech recognition systems.

2.6. Decoding

The wav2letter++ decoder is a beam-search decoder with
several optimizations to improve efficiency [14]. We use the
same decoding objective as [14], which includes the con-
straint from a language model and a word insertion term.

The decoder interface accepts as input the emissions and
(if relevant) transitions from the acoustic model. We also give
the decoder a Trie which contains the word dictionary and
a language model. We support any type of language model
which exposes the interface required by our decoder including
n-gram LMs and any other stateless parametric LM. We pro-
vide a thin wrapper on top of KenLM [15] for n-gram LMs.

3. RELATED WORK

We give a brief overview of other commonly used open-
source speech recognition systems, including Kaldi [1], ESP-
Net [2], and OpenSeq2Seq [3].

The Kaldi Speech Recognition Toolkit [1] is by far the
oldest of the aforementioned and consists of a set of stand-
alone command-line tools. Kaldi supports HMM/GMM and
hybrid HMM/NN-based acoustic modeling, and includes
phone-based recipes.

End-to-End Speech Processing Toolkit (ESPNet) [2]
tightly integrates with Kaldi and uses it for feature extraction
and data pre-processing. ESPNet uses Chainer [16] or Py-
Torch [17] as a back-end to train acoustic models. It is mostly
written in Python, however, following the style of Kaldi,
high-level work-flows are expressed in bash scripts. While
encouraging the decoupling of system components, this ap-
proach lacks the benefit of statically-typed object-oriented
programming languages in expressing type-safe, readable
and intuitive interfaces. ESPNet features both CTC-based [9]
and attention-based encoder-decoder [12] implementations as
well as a hybrid model combining both criteria.

OpenSeq2Seq [3], similarly to ESPNet, features both
CTC-based and encoder-decoder models and is written in
Python, using TensorFlow [18]. For high-level workflows
OpenSeq2Seq also relies on bash scripts that call Perl and
Python scripts. A notable feature of the OpenSeq2Seq system
is its support for mixed-precision training. Also, both ESPNet
and OpenSeq2Seq support models for Text-To-Speech (TTS).

0 75 150 250 1400

wav2letter++
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O-S2S(Mixed)
OpenSeq2Seq
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//// ////

Average batch processing time (ms)

Preprocessing Criterion Optimization Network

Fig. 3. Time in milliseconds for the major steps in the training
loop. The times are averaged for each batch over a full epoch.

Table 1 depicts the taxonomy of these open-source speech
processing systems. As the table shows, wav2letter++ is the
only framework written entirely in C++, which (i) enables
easy integration into existing applications implemented virtu-
ally in any programming language; (ii) better supports large-
scale development with static typing and object oriented pro-
gramming; (iii) allows for maximum efficiency as discussed
in Section 4. In contrast, dynamically-typed languages such
as Python promote quick prototyping, but the lack of enforced
static typing often hinders large-scale development.

4. EXPERIMENTS

In this section we discuss the performance of ESPNet, Kaldi,
OpenSeq2Seq and wav2letter++ in a comparative study. The
ASR systems are evaluated on the large vocabulary task of the
Wall Street Journal (WSJ) dataset [19]. We measure both the
average epoch time on WSJ during training and the average
utterance decoding latency.

The machines we use for the experiments have the fol-
lowing hardware configuration: each machine features eight
NVIDIA Tesla V100 Tensor Core GPUs on NVIDIA SXM2
Modules with 16GB of memory. Each compute node has 2
Intel Xeon E5-2698 v4 CPUs, totalling 40 (2⇥20) cores, 80
hardware threads (“cores”), at 2.20GHz. All machines are
connected over a 100Gbps InfiniBand network.

4.1. Training

We evaluate training time with respect to both scaling network
parameters and increasing the number of GPUs used. We
consider 2 types of neural network architectures: recurrent,
with 30 million parameters, and purely convolutional, with
100 million parameters, as depicted in the top and bottom
charts of Figure 4, respectively. For OpenSeq2Seq we con-
sider both float32 as well as mixed precision float16
training. For both networks, we use 40-dimensional log-mel
filterbanks as inputs, and CTC [9] as the criterion (CPU-based
implementation). For Kaldi, we use the LF-MMI [20] crite-
rion as CTC training is not available in the standard Kaldi

Kaldi
OpenSeq2Seq
O-S2S (Mixed)

ESPNet
wav2letter++

Average Batch Processing Time

Preprocessing Criterion Optimization Network

Decoding performance on Librispeech dev-clean.

Name WER (%) Time/sample (ms) Memory (GB)

ESPNet 7.20 1548 -

OpenSeq2Seq 5.00 1700 7.8

OpenSeq2Seq 4.92 9500 26.6

wav2letter++ 5.00 10 3.9

wav2letter++ 4.91 140 5.5


