
Variable forward(const Variable& x) {
auto hidden = matmul(weights[0], x);
hidden = max(hidden, 0); // ReLU
return matmul(weights[1], hidden);

}
Variable criterion(const Variable& yhat, const Variable& y) {

auto probs = sigmoid(yhat);
 return -(y * log(probs) + (1 - y) * log(1 - probs));

}
for (const auto& xy : trainSet) {
 criterion(forward(xy[0]), xy[1]).backward();
 for (auto& w : weights) {
 w -= lr * w.grad();
 w.zeroGrad(); // Set gradient to zero
 }

}

wav2letter++ : A Fast Open-Source Speech Recognition Framework
Vineel Pratap, Awni Hannun, Qiantong Xu, Jeff Cai, Jacob Kahn, Gabriel Synnaeve, Vitaliy Liptchinsky, Ronan Collobert

INTRODUCTION

• wav2letter++ is a fast, open-source deep learning speech recognition framework.

‣ Written entirely in C++ and backed by the efficient ArrayFire tensor library

‣ Scales linearly to 64 GPUs for models with 100+ million parameters.

‣ Over 2x faster in some cases than other optimized frameworks for training end-to-

end neural networks for speech recognition.

DESIGN

• The design of wav2letter++ is motivated by three requirements:
‣ It must efficiently train models on datasets containing thousands of hours of speech,

‣ make expressing and incorporating new network architectures, loss functions, and
other operations easy, and

‣ make the path from model research to deployment straightforward, requiring as
little new code as possible while maintaining the flexibility needed for research.

BENCHMARKS

REFERENCES

• A standalone machine learning library that:

‣ extends ArrayFire with autograd, NN modules, distributed training, etc. to support
neural network training.

‣ extends the core ArrayFire CUDA back-end with more efficient cuDNN operations
including convolutions and RNN operations.

• wav2letter++ library is built on top of flashlight.

Data Preparation and Feature Extraction

• wav2letter++ supports multiple audio file formats (e.g. wav, flac... / mono, stereo / int,

float) and several feature types including raw audio, a linearly scaled power spectrum,
log-Mels (MFSC) and MFCCs.

• Data loading computes features on the fly prior to each network evaluation.
• To make this efficient while training models, we load the audio and compute the features

asynchronously and in parallel with inference.

1. Pavan Yalamanchili, Umar Arshad, Zakiuddin Mohammed, Pradeep Garigipati, Peter Entschev, Brian Kloppenborg, James
Malcolm, and John Melonakos , “ArrayFire - A high performance software library for parallel computing with an easy-to-use

API,” 2015
2. Ronan Collobert, Christian Puhrsch, and Gabriel Synnaeve, “Wav2letter: an end-to-end convnet-based speech recognition

system,” CoRR, vol. abs/1609.03193, 2016
3. Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek, Nagendra Goel, Mirko Hannemann, Petr

Motlicek, Yanmin Qian, Petr Schwarz, et al., “The kaldi speech recognition toolkit,” in IEEE 2011 workshop on automatic
speech recognition and understanding IEEE Signal Processing Society, 2011, number EPFL-CONF-192584.

4. Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki Hayashi, Jiro Nishitoba, Yuya Unno, Nelson Enrique Yalta Soplin, Jahn
Heymann, Matthew Wiesner, Nanxin Chen, et al., “Espnet: End-to-end speech processing toolkit,” arXiv preprint arXiv:

1804.00015, 2018.
5. Oleksii Kuchaiev, Boris Ginsburg, Igor Gitman, Vitaly Lavrukhin, Carl Case, and Paulius Micikevicius, “Openseq2seq:

extensible toolkit for distributed and mixed precision training of sequence-to-sequence models,” arXiv preprint arXiv:
1805.10387, 2018

6. Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber, “Connectionist temporal classification:
labelling unsegmented sequence data with recurrent neural networks,” in Proceedings of the 23rd inter-national conference

on Machine learning. ACM, 2006, pp. 369–376.

Example: one layer MLP trained with binary cross-entropy and SGD, using autograd

Models

• We support several end-to-end sequence models with loss functions including

Connectionist Temporal Classification (CTC) [6], wav2letter's AutoSegmentationCriterion
(ASG) criterion [2], and sequence-to-sequence models with attention (seq2seq).

• Adding a new sequence criteria is particularly easy; ASG and CTC are already efficiently
implemented in C++.

• Since the flashlight library we use provides dynamic graph construction and automatic
differentiation, building new layers or other primitive operations requires little effort.

Training and Scale

• Flexibility for the user to experiment with different features, architectures. and optimization

parameters. Hackable to the core.
• Training can be run in three modes:

‣ train (flat-start training)
‣ continue (continuing with a checkpoint state)
‣ fork (for e.g. transfer learning)

• We scale wav2letter++ to larger datasets with data-parallel, synchronous and
asynchronous SGD and provide a simple framework with which to create custom

distributed optimization schemes.

Decoding

• The wav2letter++ decoder is performance-optimized beam-search decoder which:
‣ supports any type of language model which exposes the interface required by our

decoder including n-gram LMs and any other stateless parametric LM.
‣ supports online decoding, where emissions are streamed into the decoder.

ArrayFire Tensor Library
• ArrayFire [1] is a highly-optimized tensor library that supports CPU, GPU, and OpenCL

backends.
• Uses just-in-time (JIT) code generation to combine series of simple operations into a

single kernel call.
• Less verbose and relies on fewer C++ idiosyncrasies.

Flashlight Machine Learning Library

ArrayFire

Tensor Library

cuDNN, MKL
NN Accelerator Package

NCCL, MPI
Collective Comm. Library

Autograd
Variable, std functions

Neural Networks
RNN, CNN, Containers…

Datasets
Batch, Shuffle, Transform .

Meters
MSE, Time, EditDistance

Distributed
reduce on CPU & GPU

Recipes

WSJ, Librispeech

Features
logMels, MFCC

Criterion

CTC, ASG, Seq2seq

Decoder

Beam Search

flashlight

wav2letter++

wav2letter++ design

wav2letter++ - https://github.com/facebookresearch/wav2letter

flashlight - https://github.com/facebookresearch/flashlight

Decoding Speed and Throughput

Training Performance by Component

Distributed training performance on the WSJ Dataset.

Distributed Training Scales Linearly

WSJ Epoch Time Across Frameworks: 100M
Parameter wav2letter-style CNN

W
SJ

 E
po

ch
 ti

m
e

(s
ec

on
ds

),
lo

g-
sc

al
e

1.5

3.4

Number of GPUs

1 2 4 8 16 32 64

OpenSeq2Seq
OpenSeq2Seq (Mixed)
EspNet
wav2letter++

WSJ Epoch Time Across Frameworks: 30M
Parameter RNN

W
SJ

 E
po

ch
 ti

m
e

(s
ec

on
ds

),
lo

g-
sc

al
e

1.6

3.6

Number of GPUs
2 1 4 8 16 32 64

OpenSeq2Seq (Mixed)
OpenSeq2Seq
EspNet

wav2letter++

0 75 150 250 1400

Name Language Model(s) ML Syst.

Kaldi C++, Bash HMM/GMM -
DNN/LF-MMI -

ESPNet Python, CTC, seq2seq, PyTorch,
Bash hybrid Chainer

OpenSeq2Seq Python, C++ CTC, seq2seq TensorFlow
wav2letter++ C++ CTC, seq2seq, ArrayFire

ASG

Table 1. Major open-source speech recognition systems.

2.6. Decoding

The wav2letter++ decoder is a beam-search decoder with
several optimizations to improve efficiency [14]. We use the
same decoding objective as [14], which includes the con-
straint from a language model and a word insertion term.

The decoder interface accepts as input the emissions and
(if relevant) transitions from the acoustic model. We also give
the decoder a Trie which contains the word dictionary and
a language model. We support any type of language model
which exposes the interface required by our decoder including
n-gram LMs and any other stateless parametric LM. We pro-
vide a thin wrapper on top of KenLM [15] for n-gram LMs.

3. RELATED WORK

We give a brief overview of other commonly used open-
source speech recognition systems, including Kaldi [1], ESP-
Net [2], and OpenSeq2Seq [3].

The Kaldi Speech Recognition Toolkit [1] is by far the
oldest of the aforementioned and consists of a set of stand-
alone command-line tools. Kaldi supports HMM/GMM and
hybrid HMM/NN-based acoustic modeling, and includes
phone-based recipes.

End-to-End Speech Processing Toolkit (ESPNet) [2]
tightly integrates with Kaldi and uses it for feature extraction
and data pre-processing. ESPNet uses Chainer [16] or Py-
Torch [17] as a back-end to train acoustic models. It is mostly
written in Python, however, following the style of Kaldi,
high-level work-flows are expressed in bash scripts. While
encouraging the decoupling of system components, this ap-
proach lacks the benefit of statically-typed object-oriented
programming languages in expressing type-safe, readable
and intuitive interfaces. ESPNet features both CTC-based [9]
and attention-based encoder-decoder [12] implementations as
well as a hybrid model combining both criteria.

OpenSeq2Seq [3], similarly to ESPNet, features both
CTC-based and encoder-decoder models and is written in
Python, using TensorFlow [18]. For high-level workflows
OpenSeq2Seq also relies on bash scripts that call Perl and
Python scripts. A notable feature of the OpenSeq2Seq system
is its support for mixed-precision training. Also, both ESPNet
and OpenSeq2Seq support models for Text-To-Speech (TTS).

0 75 150 250 1400

wav2letter++
ESPNet

O-S2S(Mixed)
OpenSeq2Seq

Kaldi

//// ////

Average batch processing time (ms)

Preprocessing Criterion Optimization Network

Fig. 3. Time in milliseconds for the major steps in the training
loop. The times are averaged for each batch over a full epoch.

Table 1 depicts the taxonomy of these open-source speech
processing systems. As the table shows, wav2letter++ is the
only framework written entirely in C++, which (i) enables
easy integration into existing applications implemented virtu-
ally in any programming language; (ii) better supports large-
scale development with static typing and object oriented pro-
gramming; (iii) allows for maximum efficiency as discussed
in Section 4. In contrast, dynamically-typed languages such
as Python promote quick prototyping, but the lack of enforced
static typing often hinders large-scale development.

4. EXPERIMENTS

In this section we discuss the performance of ESPNet, Kaldi,
OpenSeq2Seq and wav2letter++ in a comparative study. The
ASR systems are evaluated on the large vocabulary task of the
Wall Street Journal (WSJ) dataset [19]. We measure both the
average epoch time on WSJ during training and the average
utterance decoding latency.

The machines we use for the experiments have the fol-
lowing hardware configuration: each machine features eight
NVIDIA Tesla V100 Tensor Core GPUs on NVIDIA SXM2
Modules with 16GB of memory. Each compute node has 2
Intel Xeon E5-2698 v4 CPUs, totalling 40 (2⇥20) cores, 80
hardware threads (“cores”), at 2.20GHz. All machines are
connected over a 100Gbps InfiniBand network.

4.1. Training

We evaluate training time with respect to both scaling network
parameters and increasing the number of GPUs used. We
consider 2 types of neural network architectures: recurrent,
with 30 million parameters, and purely convolutional, with
100 million parameters, as depicted in the top and bottom
charts of Figure 4, respectively. For OpenSeq2Seq we con-
sider both float32 as well as mixed precision float16
training. For both networks, we use 40-dimensional log-mel
filterbanks as inputs, and CTC [9] as the criterion (CPU-based
implementation). For Kaldi, we use the LF-MMI [20] crite-
rion as CTC training is not available in the standard Kaldi

Kaldi
OpenSeq2Seq
O-S2S (Mixed)

ESPNet
wav2letter++

Average Batch Processing Time

Preprocessing Criterion Optimization Network

Decoding performance on Librispeech dev-clean.

Name WER (%) Time/sample (ms) Memory (GB)

ESPNet 7.20 1548 -

OpenSeq2Seq 5.00 1700 7.8

OpenSeq2Seq 4.92 9500 26.6

wav2letter++ 5.00 10 3.9

wav2letter++ 4.91 140 5.5

