The discrete cosine transform on triangles

Bastian Seifert Center for Signal Analysis of Complex Systems Ansbach University of Applied Sciences

and

Knut Hüper Institute of Mathematics

University of Würzburg

Algebraic signal processing

- an algebra A of filters, capturing putting in series, in parallel, and amplificiation,
- an A-module of signals, capturing filtering, adding of signals, and amplification,
- a bijection $\Phi: \mathbb{C}^n \longrightarrow M$ mapping data to the structure of the signal model.

An algebraic signal model [\[1\]](#page-0-0) consists of

For example in finite time discrete signal processing a set of numbers $s = (s_0, \ldots, s_{n-1}) \in \mathbb{C}^n$ is called a signal if it is periodically extended, i.e. $s_N = s_{N \bmod n}$. The finite *z*-transform is

$$
(s_0, \ldots, s_{n-1}) \mapsto \sum_{i=0}^{n-1} s_i x^i,
$$

i.e. a map

$$
\Phi\colon \mathbb{C}^n\longrightarrow \mathbb{C}[x]\big/\langle x^n-1\rangle.
$$

The shift in the *z*-domain is realized as multiplication by *x*

$$
x \cdot \Phi(s) = \sum_{i=0}^{n-1} s_{i-1 \bmod n} x^i.
$$

By the multivariate Christoffel-Darboux formula \mathcal{F}_n^\top $\frac{1}{n} \cdot H_n^{\oplus}$ $f_n^\oplus\cdot\mathcal{F}_n=\mathsf{diag}\bigl(\mathbb{T}_n^\top\bigr)$ $\frac{1}{n-1}(\alpha)H_{n-1}^{-1}A_{n-1,1}\frac{\partial}{\partial x}$ *∂x*¹ $\mathbb{T}_n(\alpha)$. using the matrix $H_n^{\oplus} = \bigoplus_{k=0}^{n-1} H_k^{-1}$. Hence with $D_n =$ diag $\int \left(\mathbb{T}^{\top}_{n}\right)$ $\frac{1}{n-1}(x)H_{n-1}^{-1}A_{n-1,1}\frac{\partial}{\partial x}$ *∂x*¹ $\mathbb{T}_n(x)\big)^{-1}$ one obtains an orthogonal transform matrix as $\mathcal{F}_n^{\mathsf{orth}}$ $\frac{f}{n}$ orth $= \sqrt{H^{\oplus}_n} \mathcal{F}_n$ $\frac{1}{2}$ *Dn.*

The algebraic signal model on triangles is defined by $\mathcal{A} = \mathbb{C}[x_1, x_2]$ Fourier transform matrix of the signal model is

 $\mathcal{F}_n = (T_{k,\ell}(\alpha))_{k+\ell < n,\alpha}$

with α common zeros of the \mathbb{T}_n and resembles the discrete cosine transform.

Filters are polynomials in the *z*-domain, as well. Filtering is just multiplication in $\mathbb{C}[x]/\langle x^n-1\rangle$, i.e. circular convolution. So the filter algebra is $\mathcal{A} = \mathbb{C}[x]/\langle x^n - 1 \rangle$ and the signal module is $M = \mathbb{C}[x]/\langle x^n - 1 \rangle$. The polynomial $x^n - 1 = \prod_k x - e^{2\pi \beta k/n}$ factors and any matrix realizing the isomorphism obtained by the Chinese remainder theorem

They are orthogonal on the image of $F = \{ \theta \in \mathbb{R}^2 \mid 0 \leq \theta \}$ $\theta_1 \leq \theta_2 \leq \frac{1}{2}$ 2 } under the map

$$
\mathbb{C}[x]/\langle x^n-1\rangle \longrightarrow \bigoplus_l \mathbb{C}[x]/\langle x-e^{2\pi ik/n}\rangle
$$

is called a Fourier transform. Choosing bases one can for example obtain the discrete Fourier transform matrix

Let $T_k = (T_{0,k}, T_{1,k-1}, \ldots, T_{k,0})^{\top}$. Then there exist matrices $A_{k,i}$, $B_{k,i}$, and $C_{k,i}$ such that one has a recurrence relation

$$
\mathsf{DFT}_n = \left[e^{2\pi \mathrm{i} kj/n} \right]_{k,j}.
$$

Visualization graph

Orthogonal transform

with matrices $H_0 = \frac{1}{2}$ $\frac{1}{2}$ and $H_k = \mathsf{diag}(\frac{1}{8})$ 8 $\frac{1}{16}$ 16 $\frac{1}{16}$ 16 $\frac{1}{8}$ 8).

Algebraic signal model on triangles

$$
c_2
$$
/ $\langle \mathbb{T}_n \rangle$, $M = \mathcal{A}$, and $\Phi: s \mapsto \sum_{k+\ell < n} s_{k,\ell} T_{k,\ell}$. The

*B*2**-Chebyshev polynomials**

Chebyshev polynomials of type *B*² obey the reccurence relation

 $x_1 \cdot T_{k,\ell} = \frac{1}{4}$ $\frac{1}{4}(T_{k+1,\ell} + T_{k-1,\ell} + T_{k-1,\ell+2} + T_{k+1,\ell-2}),$ $x_2 \cdot T_{k,\ell} = \frac{1}{4}$ $\frac{1}{4}(T_{k,\ell+1} + T_{k,\ell-1} + T_{k-1,\ell+1} + T_{k+1,\ell-1}).$

The common zeros of \mathbb{T}_n are given in θ -coordinates as

$$
\begin{aligned} \{(\frac{k}{2n}, \frac{j}{4n}) \mid k = 0, \dots, n-1; \\ j = 1, 3, \dots, 2n-1; j \ge 2k \}. \end{aligned}
$$

Christoffel-Darboux formula

$$
x_i \mathbb{T}_k = A_{k,i} \mathbb{T}_{k+1} + B_{k,i} \mathbb{T}_k + C_{k,i} \mathbb{T}_{k-1}.
$$

From the recurrence relation one can deduce a multivariate Christoffel-Darboux formula [\[2\]](#page-0-1)

$$
\sum_{k=0}^{n-1} \mathbb{T}_{k}^{\top}(x) H_{k}^{-1} \mathbb{T}_{k}(y)
$$
\n
$$
= \begin{cases}\n(x_{i} - y_{i})^{-1} \\
((A_{n-1,i} \mathbb{T}_{n}(x)) \top H_{n-1}^{-1} \mathbb{T}_{n-1}(y) & \text{if } x_{i} \neq y_{i} \\
-\mathbb{T}_{n-1}^{\top}(x) H_{n-1}^{-1} A_{n-1,i} \mathbb{T}_{n}(y)\n\end{cases}
$$
\n
$$
\mathbb{T}_{n-1}^{\top}(x) H_{n-1}^{-1} A_{n-1,i} \frac{\partial}{\partial x_{i}} \mathbb{T}_{n}(x)
$$
\n
$$
= (A_{n-1,i} \mathbb{T}_{n}(x)) \top H_{n-1}^{-1} \frac{\partial}{\partial x_{i}} \mathbb{T}_{n-1}(x) \quad \text{if } x_{i} = y_{i},
$$

Fast algorithm

A fast algorithm for this transform exists and is based on a geometric stretching and folding operation. See [\[3\]](#page-0-2) for

details.

References

[1] M. Püschel and J.M.F. Moura.

Algebraic signal processing theory: Foundation and 1-D time. *Signal Processing, IEEE Trans.*, 56(8):3572–3585, 2008.

On multivariable orthogonal polynomials.

-
- [2] Y. Xu.
- [3] B. Seifert.

SIAM J. Math. Anal., 24:783–794, 1993.

FFT and orthogonal discrete transform on weight lattices of semi-simple Lie groups.

submitted for publication, arXiv:1901.06254, 2019.

Acknowledgements

This work is partially supported by the European Regional Development Fund (ERDF).

Email addresses

• bastian.seifert@hs-ansbach.de

• hueper@mathematik.uni-wuerzburg.de

