

Algebraic signal processing

An algebraic signal model [1] consists of

- an algebra \mathcal{A} of filters, capturing putting in series, in parallel, and amplificiation,
- an \mathcal{A} -module of signals, capturing filtering, adding of signals, and amplification,
- a bijection $\Phi \colon \mathbb{C}^n \longrightarrow M$ mapping data to the structure of the signal model.

For example in finite time discrete signal processing a set of numbers $s = (s_0, \ldots, s_{n-1}) \in \mathbb{C}^n$ is called a signal if it is periodically extended, i.e. $s_N = s_{N \mod n}$. The finite z-transform is

$$(s_0,\ldots,s_{n-1})\mapsto\sum_{i=0}^{n-1}s_ix^i,$$

i.e. a map

$$\Phi\colon \mathbb{C}^n \longrightarrow \mathbb{C}[x] / \langle x^n - 1 \rangle.$$

The shift in the z-domain is realized as multiplication by

$$x \cdot \Phi(s) = \sum_{i=0}^{n-1} s_{i-1 \mod n} x^i.$$

Filters are polynomials in the z-domain, as well. Filtering is just multiplication in $\mathbb{C}[x]/\langle x^n-1\rangle$, i.e. circular convolution. So the filter algebra is $\mathcal{A} = \mathbb{C}[x]/\langle x^n - 1 \rangle$ and the signal module is $M = \mathbb{C}[x]/\langle x^n - 1 \rangle$. The polynomial $x^n - 1 = \prod_k x - e^{2\pi\beta k/n}$ factors and any matrix realizing the isomorphism obtained by the Chinese remainder theorem

$$\mathbb{C}[x]/\langle x^n - 1 \rangle \longrightarrow \bigoplus_l \mathbb{C}[x]/\langle x - e^{2\pi i k/n} \rangle$$

is called a Fourier transform. Choosing bases one can for example obtain the discrete Fourier transform matrix

$$\mathsf{DFT}_n = \left[\mathrm{e}^{2\pi \mathrm{i}kj/n} \right]_{k,j}.$$

The discrete cosine transform on triangles

Bastian Seifert Center for Signal Analysis of Complex Systems Ansbach University of Applied Sciences

and

Visualization graph

Algebraic signal model on triangles

The algebraic signal model on triangles is defined by $\mathcal{A} = \mathbb{C}[x_1, x]$ Fourier transform matrix of the signal model is

 $\mathcal{F}_n = (T_{k,\ell}(\alpha))_{k+\ell < n,\alpha},$

with α common zeros of the \mathbb{T}_n and resembles the discrete cosine transform.

B_2 -Chebyshev polynomials

Chebyshev polynomials of type B_2 obey the recurrence relation

$$x_1 \cdot T_{k,\ell} = \frac{1}{4} (T_{k+1,\ell} + T_{k-1,\ell} + T_{k-1,\ell+2} + T_{k+1,\ell-2}),$$

$$x_2 \cdot T_{k,\ell} = \frac{1}{4} (T_{k,\ell+1} + T_{k,\ell-1} + T_{k-1,\ell+1} + T_{k+1,\ell-1}).$$

They are orthogonal on the image of $F = \{\theta \in \mathbb{R}^2 \mid 0 \leq$ $\theta_1 \leq \theta_2 \leq \frac{1}{2}$ under the map

The common zeros of \mathbb{T}_n are given in θ -coordinates as

$$\{ (\frac{k}{2n}, \frac{j}{4n}) \mid k = 0, \dots, n-1; \\ j = 1, 3, \dots, 2n-1; j \ge 2k \}.$$
 wit

From the recurrence relation one can deduce a multivariate Christoffel-Darboux formula [2]

Knut Hüper Institute of Mathematics

University of Würzburg

Orthogonal transform

By the multivariate Christoffel-Darboux formula $\mathcal{F}_{n}^{\top} \cdot H_{n}^{\oplus} \cdot \mathcal{F}_{n} = \mathsf{diag} \big(\mathbb{T}_{n-1}^{\top}(\alpha) H_{n-1}^{-1} A_{n-1,1} \frac{\partial}{\partial x_{1}} \mathbb{T}_{n}(\alpha) \big).$ using the matrix $H_n^{\oplus} = \bigoplus_{k=0}^{n-1} H_k^{-1}$. Hence with $D_n = \mathsf{diag}\left(\left(\mathbb{T}_{n-1}^{\top}(x)H_{n-1}^{-1}A_{n-1,1}\frac{\partial}{\partial x_1}\mathbb{T}_n(x)\right)^{-1}\right)$ one obtains an orthogonal transform matrix as $\mathcal{F}_n^{\mathsf{orth}} = \sqrt{H_n^{\oplus}} \mathcal{F}_n \sqrt{D_n}.$

$$[c_2]/\langle \mathbb{T}_n \rangle, M = \mathcal{A}, \text{ and } \Phi \colon s \mapsto \sum_{k+\ell < n} s_{k,\ell} T_{k,\ell}.$$
 The

Christoffel-Darboux formula

Let $\mathbb{T}_k = (T_{0,k}, T_{1,k-1}, \ldots, T_{k,0})^\top$. Then there exist matrices $A_{k,i}, B_{k,i}$, and $C_{k,i}$ such that one has a recurrence relation

$$x_i \mathbb{T}_k = A_{k,i} \mathbb{T}_{k+1} + B_{k,i} \mathbb{T}_k + C_{k,i} \mathbb{T}_{k-1}.$$

$$\sum_{k=0}^{n-1} \mathbb{T}_{k}^{\top}(x) H_{k}^{-1} \mathbb{T}_{k}(y)$$

$$= \begin{cases} (x_{i} - y_{i})^{-1} \cdot \\ ((A_{n-1,i} \mathbb{T}_{n}(x))^{\top} H_{n-1}^{-1} \mathbb{T}_{n-1}(y) & \text{if } x_{i} \neq y_{i} \\ -\mathbb{T}_{n-1}^{\top}(x) H_{n-1}^{-1} A_{n-1,i} \mathbb{T}_{n}(y) \end{pmatrix} \\ \mathbb{T}_{n-1}^{\top}(x) H_{n-1}^{-1} A_{n-1,i} \frac{\partial}{\partial x_{i}} \mathbb{T}_{n}(x) \\ - (A_{n-1,i} \mathbb{T}_{n}(x))^{\top} H_{n-1}^{-1} \frac{\partial}{\partial x_{i}} \mathbb{T}_{n-1}(x) & \text{if } x_{i} = y_{i}, \end{cases}$$

th matrices $H_0 = \frac{1}{2}$ and $H_k = \text{diag}(\frac{1}{8}, \frac{1}{16}, \dots, \frac{1}{16}, \frac{1}{8})$.

details.

- [2] Y. Xu.
- [3] B. Seifert.

This work is partially supported by the European Regional Development Fund (ERDF).

Fast algorithm

A fast algorithm for this transform exists and is based on a geometric stretching and folding operation. See [3] for

References

[1] M. Püschel and J.M.F. Moura.

Algebraic signal processing theory: Foundation and 1-D time. Signal Processing, IEEE Trans., 56(8):3572–3585, 2008.

On multivariable orthogonal polynomials.

SIAM J. Math. Anal., 24:783–794, 1993.

FFT and orthogonal discrete transform on weight lattices of semi-simple Lie groups.

submitted for publication, arXiv:1901.06254, 2019.

Acknowledgements

Email addresses

• bastian.seifert@hs-ansbach.de

• hueper@mathematik.uni-wuerzburg.de

Europäischer Fonds für regionale Entwicklur Eine Förderung der Europäischen Unior