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Algebraic signal processing
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An algebraic signal model [1] consists of
• an algebra A of filters, capturing putting in series, in
parallel, and amplificiation,
• an A-module of signals, capturing filtering, adding of
signals, and amplification,
• a bijection Φ: Cn −→M mapping data to the
structure of the signal model.

For example in finite time discrete signal processing a set
of numbers s = (s0, . . . , sn−1) ∈ Cn is called a signal if
it is periodically extended, i.e. sN = sN mod n. The finite
z-transform is

(s0, . . . , sn−1) 7→
n−1∑
i=0

six
i,

i.e. a map
Φ: Cn −→ C[x]

/
〈xn − 1〉.

The shift in the z-domain is realized as multiplication by
x

x · Φ(s) =
n−1∑
i=0

si−1 mod nx
i.

Filters are polynomials in the z-domain, as well. Filtering
is just multiplication in C[x]

/
〈xn−1〉, i.e. circular convo-

lution. So the filter algebra is A = C[x]
/
〈xn−1〉 and the

signal module is M = C[x]
/
〈xn − 1〉. The polynomial

xn − 1 = ∏
k x − e2πßk/n factors and any matrix realiz-

ing the isomorphism obtained by the Chinese remainder
theorem

C[x]
/
〈xn − 1〉 −→

⊕
l

C[x]
/
〈x− e2πik/n〉

is called a Fourier transform. Choosing bases one can for
example obtain the discrete Fourier transform matrix

DFTn =
[
e2πikj/n

]
k,j
.
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Orthogonal transform

By the multivariate Christoffel-Darboux formula
F>n ·H⊕n · Fn = diag

(
T>n−1(α)H−1

n−1An−1,1
∂
∂x1

Tn(α)
)
.

using the matrix H⊕n = ⊕n−1
k=0 H

−1
k . Hence with

Dn = diag
((

T>n−1(x)H−1
n−1An−1,1

∂
∂x1

Tn(x)
)−1)

one obtains an orthogonal transform matrix as
F orth
n =

√
H⊕n Fn

√
Dn.

Algebraic signal model on triangles

The algebraic signal model on triangles is defined by A = C[x1, x2]
/
〈Tn〉, M = A, and Φ: s 7→ ∑

k+`<n sk,`Tk,`. The
Fourier transform matrix of the signal model is

Fn = (Tk,`(α))k+`<n,α,

with α common zeros of the Tn and resembles the discrete cosine transform.

B2-Chebyshev polynomials

Chebyshev polynomials of type B2 obey the reccurence
relation

x1 · Tk,` = 1
4(Tk+1,` + Tk−1,` + Tk−1,`+2 + Tk+1,`−2),

x2 · Tk,` = 1
4(Tk,`+1 + Tk,`−1 + Tk−1,`+1 + Tk+1,`−1).

They are orthogonal on the image of F = {θ ∈ R2 | 0 ≤
θ1 ≤ θ2 ≤ 1

2} under the map
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The common zeros of Tn are given in θ-coordinates as

{( k2n,
j

4n) | k = 0, . . . , n− 1;
j = 1, 3, . . . , 2n− 1; j ≥ 2k}.

Christoffel-Darboux formula

Let Tk = (T0,k, T1,k−1, . . . , Tk,0)>. Then there exist ma-
trices Ak,i, Bk,i, and Ck,i such that one has a recurrence
relation

xiTk = Ak,iTk+1 + Bk,iTk + Ck,iTk−1.

From the recurrence relation one can deduce a multivari-
ate Christoffel-Darboux formula [2]

n−1∑
k=0

T>k (x)H−1
k Tk(y)

=



(xi − yi)−1·(
(An−1,iTn(x))>H−1

n−1Tn−1(y)
− T>n−1(x)H−1

n−1An−1,iTn(y)
) if xi 6= yi

T>n−1(x)H−1
n−1An−1,i

∂
∂xi

Tn(x)
− (An−1,iTn(x))>H−1

n−1
∂
∂xi

Tn−1(x) if xi = yi,

with matrices H0 = 1
2 and Hk = diag(1

8,
1
16, . . . ,

1
16,

1
8).

Fast algorithm

A fast algorithm for this transform exists and is based on
a geometric stretching and folding operation. See [3] for
details.
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