Estimation of Gaze Region using Two Dimensional Probabilistic Maps Constructed using Convolutional Neural Networks

Sumit Jha, Carlos Busso

Motivation

Background:

- Gaze tracking can be helpful in understanding user's engagement
- · Student's attention in remote learning
- · Distraction during driving
- Interaction in human-robot and human-computer interfaces
- Target system: Calibration-free gaze estimation
- Approach
- Predicting a probabilistic confidence region
- Solving regression as a classification task
- · CNN: downsampling followed by upsampling

MSP-GAZE

- Gaze corpus collected at UT-Dallas [Li,2018]
- Target point projected on the highlighted portion of the monitor
- Data collected with 46 subjects Gender

balanced

- Diverse ethnic group
- Multiple sessions
- RGB data from the webcam is used
- Eye pair obtained using Viola-Jones algorithm
- Grayscale Resized to

Model

- Network purely based on convolutional lavers
- Sequence of max-pooling followed by a sequence of up sampling
- Output is obtained as a label in the grid
- 16, 3x3 filters at each stage
- ReLU activation
- Input 100x25 eye pair image
- Output 48x24 grid
- Subject independent partition
- Output resolution can be adjusted based on application by adding or removing layers
- Softmax activation at the last layer to output probability scores for each grid
- Cross entropy loss on weighted output to penalize larger error

Results

Comparison with Regression Model

- The predicted label is the output label with the highest value
- Baseline: regression model with similar architecture
- 6 convolution layer followed by 2 fully connected layers
- More parameters in the regression model because of fully connected lavers

Proposed Approach

Accuracy versus resolution

- Confidence region with different resolution
- Larger areas lower resolution, higher accuracy
- 75% accuracy at 13cm x 13cm

Probabilistic Map

- Distribution of gaze as softmax output
- More practical than deterministic output

100.0 75.0 50.0

Evaluation of Probabilistic Gaze Map

Conclusions

- practical method to estimate visual attention
- Easy integration with current models by replacing the fully connected layers with CNNs
- Less number of parameters and efficient implementation by multi-threading the code

Future Work

- Application in naturalistic driving condition
- · Lateral connections to maintain high spatial resolution
- Ladder connections for semi-supervised learning

iang Li and Carlos Busso, "Calibration free, user independent gaz sis," Image and Vision Computing, vol. 74, pp. 10-20, June 2018

