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Audio-Visual
Recognition systems

Historically Lipreading has been 
adopted to improve audio speech 
recognition in noisy environments: 
the first to use it was Petajan [1984].

Lipreading as a
standalone problem

Being it a challenging task, as pointed out 
by Stork et al. [1992], it has also been 
studied as a standalone problem. The first 
to do so were Chiou and Hwang [1997].

What is Lipreading?



Problem

● Lipreading involves dealing with many diverse problems

● Automatic Lipreading systems do not generalize well over unseen speakers, as investigated 
among others by Cox et al. [2008]; Chung and Zisserman [2017]; Wand and Schmidhuber [2017]

● Physical traits differ from speaker to speaker:

○ Gender, age, ethnicity

○ Mustaches, beard, lipstick

○ Mouth conformation

● Speaker-Independence is an open problem



Goal

1. Improve generalization over speech uttered by unknown speakers

2. Evaluate our new method on a word-level Lipreading task

How?

Taking inspiration from Villegas et al. [2017], we want to build a system that also
explicitly models the motion dynamics of speech.
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Data Corpus and Dataset preparation

● 34 speakers
● Strict grammar and sentence structure

command{4} + color{4} + preposition{4} + letter{25} + digit{10} + adverb{4}

Example: “Place green at g 6 again”

● 51 unique words, 6000 uttered by each speaker

GRID Data Corpus

34
speakers

20
development

13
evaluation



How to test Speaker-Independence
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Development Setup

Data splits
We divided data from each speaker 
into train, validation and test splits.

Validation and test sets are target 
balanced.

Cross-Speaker Validation
We took each development speaker 
as the target speaker one and only 
one time.

We report only average word 
classification accuracy.
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Baseline Definition (1)

We define a baseline system that
does not explicitly model motion dynamics.

How?



Baseline Definition (2)

How?

We experimentally defined it 
altering meta-parameters of 
base system by Wand and 
Schmidhuber [2017]:

● Feed-forward layers

● LSTM layers

● Hidden Units



Experiments

Dual-Pipeline MC

Definition
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Results



Evaluation Setup

Data splits
We divided data from each speaker 
into train, validation and test splits.

Validation and test sets are target 
balanced.

Cross-Speaker Validation
We took each evaluation speaker as 
the target speaker one and only 
one time.

We report only average word 
classification accuracy.

T-Test
We measure statistical significance 
of improvements yielded by Dual-
Pipeline MC w.r.t. the baseline 
system.
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1 source speaker 4 source speakers

8 source speakers

Target speaker word 
accuracies over the 
evaluation speakers



Results

● Improvements both on source and 
target speakers

● Maintained when increasing the 
amounts of data used for training

● All improvements are statistically 
significant (p-values << 0.05)

● Motion Dynamics improve the model 
speaker-independence



Conclusion

Goal
We set out to build a 
word-level Lipreading 
model that improves on 
Speaker-Independence.

Results
Dual-Pipeline MC 
architecture yields 
improvements of ≈ 6.8% 
on unseen speakers and 
of ≈ 3.3% on known 
speakers.

How
We took inspiration from 
the work by Villegas et al. 
[2017] on decoupling 
motion and content.
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