Aalto University

Motivation

Scope: Recovering graph signal from few sampled nodes.
Problem: The adjacency matrix A may not be accurately chosen.

Objective: Be more robust to errors in graph specification.

Data model

e The graph signal is sampled at M time points according to
probabilistic sampling strategy. S|n| denotes the set of sampled nodes
at time instant n and Dgy,) = diag(di|n], ..., dy[n]), where d;[n] = 1
if ¢+ € S|nl, and 0 otherwise. The model for observations:

Y[n] — DS[n](X_I_ V:n])a n=1,...,M,

x is the graph signal of interest and v|n| is the measurement noise.

e We assume that x is bandlimited graph signal x = V s, where V r is
N x |F| matrix containing the eigenvectors corresponding to |F|
smallest eigenvalues of the graph Laplacian matrix L.

Graph LMS

e The optimization problem to be solved:

D (y[n] — Vzs)||*.

e The update step for estimating x:
%[n + 1] = &[n] + B Dy (yln] — x[n)
(18 step-size and Br =V ;Vg .
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Robust LMS estimation of graph signals

e Our method relies on that the LMS converges the faster, the better the
matrix B r is related to the data.

e We use two criteria for the speed of convergence:
(a) Initial value x(|0] = 0 and the aim is to maximize the energy

%0l M]|
of the estimate given by (1).

(b) Two random initial values X;|0] and X5|0] and the aim is to maximize the
correlation

cor(X1| M|, Xo| M]).
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e We propose greedy algorithm to maximize above criteria over A.

e To draw new search directions from the previous estimate of A we use
the following model

Alo=A-A  0OCA+A,O (Iyxy—A)

A, is a random N x N matrix satisfying P([A¢);; = 1) = € and
P(|Adij =0) =1 —¢€, and €; and €, are probabilities of removing and

(2)

adding an edge from/to A.

Algorithm

o

Input: y[1],...,y[M]|, Dgy, ..., Dgp, adjacency matrix estimate A,
step size €1, K

Initialisation : (a) Xp|0] = 0 (b) random initial values X;|0] and Xs|0]
Repeat the following steps until A=A,

].A()%A

2.Set & = rlaw g — l,...,5, where w = N‘(’]‘AQH_OU

4(1—w)

3. Draw a set of adjacency matrices Al, el Asj from the oraph error
model (2) around Ay using € and each of €, K times.

4.(a) Run (1) for BY%, By, ..., B with initial value %,[0] = O.
(b) Run (1) for B%, B, ..., B%* with initial values %;[0] and %»[0].
5. Find the adjacency matrix Amm which vields largest value of
(a) ||%o[M]]|
(b) cor(3[M], %[ M))
0.A <+ A,,;,
Output: X[M] given by LMS with A.

Simulation setup

o N =100, M =50, | F| = 5.

e Noise covariance matrix is diagonal and the elements drawn uniformly
on [0.1,0.2].

e A is Erdos—Rényi with probability parameter 0.1.

e The average sampling probability is 1,p = 0.125 and about 80% of
the probabilities are zeros, p = 1,-0.

e [n Algorithm €; = 0.01 and K = 4.

Robust least mean squares estimation of graph signals
Jari Miettinen, Sergiy Vorobyov and Esa Ollila

A=A A= Ay10.025, P from A
1} —= ' ' _ ' ' 1r | | | ]
+ — + —
0.8 ¥ % ? = % ¥ o8l 1 L+
- > < g
\ ool ! \ ool 35k
c c | I | |
o o | i T
= 045 = 040 L S
© [N o
g 027 5 02 &
o o +
Of Of
0.2} 0.2}
LMS ab(A) 2a(A) 2b(A)2ab(A) A LMS ab(A) 2a(A) 2b(A)2ab(A) A
A =Ap1002, p from A A= Ap10025, P from A
1 S — | — T b | - | Bl ]
D | | T I | | 1 ?
I I
08 | 5 g : 0.8 == O ? :
I
n 0.6 S | | Jf . »w 0.6 %
5 L L 5 :
— I —
_,c_s_. 04+ : L = i f * 1 E 0.4 : +
© : : o
S 02F - H : t S 02F
o . ©
i :
Of Of
0.2} 0.2}
LMS ab(A) 2a(A) 2b(A)2ab(A) A LMS ab(A) 2a(A) 2b(A)2ab(A) A
A= A0.2,0.057 p from A A =Ap2005, pfrom A
1 i | | | | T 1 i . o _:_ _I_ I ]
T — — T T - |
0.8 | i o | g - 0.8 | % % % H ]
| | I I
8 06 > < S < S N g 0.6 | Jf | J%
o >—< | | J? O - | ’
= 04 | | | | o = 04 " 4§ N N
@ I ! | | ¥ + E) : T
5 02 | ¥ L L S 021 | +
o | % z % % + o I ¢
(A AR A B
02t ¥ T 0.2+
| + | | | + | | | |
LMS ab(A) 2a(A) 2b(A)2ab(A) A LMS ab(A) 2a(A) 2b(A)2ab(A) A
Conclusion

e The effect of graph topology misspecification to graph signal recovery
can be reduced by using the data to improve the interpolator matrix.

e Reconsidering only the edges related to sampled nodes is sufficient.

e The method would be more efficient if the sampled nodes were chosen

based on the correct graph topologyv.
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