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Motivation

Scope: Recovering graph signal from few sampled nodes.
Problem: The adjacency matrix A may not be accurately chosen.
Objective: Be more robust to errors in graph specification.

Data model

•The graph signal is sampled at M time points according to
probabilistic sampling strategy. S [n] denotes the set of sampled nodes
at time instant n and DS [n] = diag(d1[n], . . . , dN [n]), where di[n] = 1
if i ∈ S[n], and 0 otherwise. The model for observations:

y[n] = DS [n](x + ν[n]), n = 1, . . . ,M,

x is the graph signal of interest and ν[n] is the measurement noise.
•We assume that x is bandlimited graph signal x = VFs, where VF is
N × |F| matrix containing the eigenvectors corresponding to |F|
smallest eigenvalues of the graph Laplacian matrix L.

Graph LMS

•The optimization problem to be solved:
mins E‖DS [n](y[n]−VFs)‖2.

•The update step for estimating x:
x̂[n + 1] = x̂[n] + µBFDS [n](y[n]− x̂[n]) (1)

µ is step-size and BF = VFVH
F .

Robust LMS estimation of graph signals

•Our method relies on that the LMS converges the faster, the better the
matrix BF is related to the data.
•We use two criteria for the speed of convergence:
(a) Initial value x̂0[0] = 0 and the aim is to maximize the energy

‖x̂0[M ]‖
of the estimate given by (1).

(b) Two random initial values x̂1[0] and x̂2[0] and the aim is to maximize the
correlation

cor(x̂1[M ], x̂2[M ]).

•We propose greedy algorithm to maximize above criteria over A.
•To draw new search directions from the previous estimate of A we use
the following model

Aε1,ε2 = A−∆ε1 �A + ∆ε2 � (1N×N −A) (2)
∆ε is a random N ×N matrix satisfying P([∆ε]ij = 1) = ε and
P([∆ε]ij = 0) = 1− ε, and ε1 and ε2 are probabilities of removing and
adding an edge from/to A.

Algorithm

Input: y[1], . . . ,y[M ], DS [1], . . . ,DS [M ], adjacency matrix estimate Â,
step size ε̃1, K
Initialisation : (a) x̂0[0] = 0 (b) random initial values x̂1[0] and x̂2[0]
Repeat the following steps until Â = Â0

1. Â0← Â
2. Set ε̃i2 = (i+1)ε̃1w

4(1−w) for i = 1, . . . , 5, where w = ‖Â‖0
N(N−1)

3.Draw a set of adjacency matrices Â1, . . . , Â5K from the graph error
model (2) around Â0 using ε̃1 and each of ε̃i2 K times.

4. (a) Run (1) for B0
F ,B1

F , . . . ,B5K
F with initial value x̂0[0] = 0.

(b) Run (1) for B0
F ,B1

F , . . . ,B5K
F with initial values x̂1[0] and x̂2[0].

5.Find the adjacency matrix Âmin which yields largest value of
(a) ‖x̂0[M ]‖
(b) cor(x̂1[M ], x̂2[M ])

6. Â← Âmin

Output: x̂[M ] given by LMS with Â.

Simulation setup

•N = 100, M = 50, |F| = 5.
•Noise covariance matrix is diagonal and the elements drawn uniformly
on [0.1, 0.2].
•A is Erdös–Rényi with probability parameter 0.1.
•The average sampling probability is 1>Np = 0.125 and about 80% of
the probabilities are zeros, p̃ = 1p>0.
• In Algorithm ε̃1 = 0.01 and K = 4.
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Conclusion

•The effect of graph topology misspecification to graph signal recovery
can be reduced by using the data to improve the interpolator matrix.
•Reconsidering only the edges related to sampled nodes is sufficient.
•The method would be more efficient if the sampled nodes were chosen
based on the correct graph topology.
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