Biased Information Processing Model

Cognitive bias: Deviation from rational judgement yielding potentially incorrect or damaging inference/decision (Tversky and Kahneman 1972).

Sources of bias: Limited human mental processing capacity, cognitive shortcuts (heuristics), social context, emotions, etc.

Examples: -Confirmation bias: searching for or interpreting information in a way that supports a preconception. Observed in many settings, e.g., trials.

-Anchoring bias: Over reliance on one piece of information (usually the first). Observed in many settings, e.g., negotiations.

-Framing: drawing conclusion from information depending on how it is presented. Observed in many settings, e.g., marketing, media, politics.

Experiment²:

-Humans receive training on how to classify objects from two classes.

-Human classification performance depends on order in which items are presented to humans.

Problem formulation

Binary hypothesis detection problem:

$$H_0: Y_n = W_n$$

$$H_1: Y_n = m + W_n$$

where $W_n \sim N(0, \delta^2)$ are i.i.d. and m is the difference in the means under the two hypothesis.

Proposed Model for human decision-making under cognitive biases:

$$L_k = L_{k-1} + p_k l_k \quad (1)$$

where $l_k = log(\frac{f(Y_k|H_1)}{f(Y_k|H_0)})$ adjustment weight that the subject gives to the new observation.

Alice

- Ideal reference
- Unbiased agent
- Has access to N
- observations

 $\left(\frac{2mY_k-m^2}{m}\right)$			
	2δ	—J	

- **Actual decision maker**
- Biased agent uses model (1)

and p_k the

Has only access to N' out of N observations

Goal: Select N' out of N total observations to show to Bob so that his decision performance is within a desired distance from Alice's.

Find in polynomial time a subset $K \subset [N], |K| \leq N'$, such that $|T - L_{N'}|$ is minimized, where $T = \frac{\sqrt{N'}(L_N - E[L_N | H_0])}{\sqrt{N}} +$ $E[L_{N'}|H_0]$ is the target and $L_{N'} = \sum_{i \in K} l_i$ the biased cumulative log-likelihood ratio of Bob according to equation (1).

MITIGATION^{0,1}

