

Towards Learned Color Representations for Image Splicing Detection

Benjamin Hadwiger*, Daniele Baracchi⁺, Alessandro Piva⁺, Christian Riess*

 * IT Security Infrastructures Lab, Friedrich-Alexander University Erlangen-Nürnberg (FAU)
* Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Firenze (UNIFI) THAT FRIDER

ICASSP, Brighton, May 2019

Did these events really occur?

Hadwiger et al.: Towards Learned Color Representations for Image Splicing Detection, ICASSP 2019

2

Multimedia Forensics – Goals and Methods

Important goal of **multimedia forensics**: Determine **authenticity of images**

Typical approaches: Exploit **high frequent (HF)** image statistics, e.g.

- Camera fingerprint
- Noise statistics
- Compression artifacts
- Resampling artifacts

The Impact of Social Networks

The Impact of Social Networks

Images are automatically **post-processed**, most notably:

- Downsampling
- JPEG recompression
- → Significantly attenuates HF forensic artifacts
- → Restricts applicability to **high quality images**

Hadwiger et al.: Towards Learned Color Representations for Image Splicing Detection, ICASSP 2019

The Impact of Social Networks

Hadwiger et al.: Towards Learned Color Representations for Image Splicing Detection, ICASSP 2019

Towards Robust Manipulation Detection

Can we detect manipulations independently of the image quality?

Towards Robust Manipulation Detection

Can we detect manipulations independently of the image quality?

Physics-based cues are often remarkably robust against post-processing

We explore a **novel cue** based on the **color formation** of an image

Towards Robust Manipulation Detection

Can we detect manipulations independently of the image quality?

Physics-based cues are often remarkably robust against post-processing

We explore a **novel cue** based on the **color formation** of an image

Images based on MIT-Adobe 5k Database

Hadwiger et al.: Towards Learned Color Representations for Image Splicing Detection, ICASSP 2019

e(λ)

Proposed Method: Idea

$$\vec{\mathbf{I}} = \mathbf{\Omega}\left(\int_{\Lambda} \mathbf{e}(\boldsymbol{\lambda}) \cdot \mathbf{r}(\boldsymbol{\lambda}) \cdot \vec{\mathbf{c}}(\boldsymbol{\lambda}) \, d\boldsymbol{\lambda}\right)$$

e: illuminant sp. density

- Ω : in-camera processing
- **č**: sp. camera sensitivity
- r: spectral reflectance
- **I**: image intensity

 $e,\,\Omega$ and c characterize imaging conditions

Assume consistency of e, Ω and c in pristine image

Image source: NUS Database

Proposed Method: Idea

$$\vec{\mathbf{I}} = \Omega\left(\int_{\Lambda} \mathbf{e}(\lambda) \cdot \mathbf{r}(\lambda) \cdot \vec{\mathbf{c}}(\lambda) \, \mathrm{d}\lambda\right)$$

 $e,\,\Omega$ and c characterize imaging conditions

Assume consistency of e, Ω and c in pristine image

How can we **control** the spectral reflectance $r(\lambda)$?

- e: illuminant sp. density
- Ω : in-camera processing
- **č**: sp. camera sensitivity
- r: spectral reflectance
- **I**: image intensity

Image source: NUS Database

Proposed Method: Idea

$$\vec{\mathbf{I}} = \Omega \left(\int_{\Lambda} \mathbf{e}(\lambda) \cdot \mathbf{r}(\lambda) \cdot \vec{\mathbf{c}}(\lambda) \, \mathrm{d}\lambda \right)$$

- e: illuminant sp. density
- Ω: in-camera processing
- **č**: sp. camera sensitivity
- r: spectral reflectance
- **I**: image intensity

$e,\,\Omega$ and c characterize imaging conditions

Image source: NUS Database

Proposed Method: Learning the Color Descriptor

1. Train a CNN to locally estimate the observed colors of the ColorChecker

The learned color descriptor is

- Covariant with respect to imaging conditions
- Invariant with respect to reflectance of the image patches

Proposed Method: Consistency Assessment

2. Classify consistency of local estimates

Discriminability of the Learned Color Descriptor

How well do the learned color features **characterize the image provenance** of a patch?

Discriminability of the Learned Color Descriptor

How well do the learned color features **characterize the image provenance** of a patch?

- Extract non-overlapping patches from test images
- Randomly split patches into training / test set
- Train a Random Forest to classify patch provenance: "From which image is this patch?"
- Repeat for increasingly stronger compressions

Discriminability of the Learned Color Descriptor

How well do the learned color features characterize the image provenance of a patch?

- Extract **non-overlapping** patches from test images
- Randomly split patches into training / test set
- Train a Random Forest to classify patch provenance: "From which image is this patch?"
- Repeat for increasingly stronger compressions

Consistency Assessment with the Color Descriptor

A more realistic scenario: Are **different regions** in an image **consistent**?

Image based on Dresden Image Database

Consistency Assessment with the Color Descriptor

A more realistic scenario: Are **different regions** in an image **consistent**?

- Training on VISION Database, Test on Dresden Image Database
- Test splices: combine same scene from different cameras
- Assess patch-based consistency of reference and target region
- Repeat for increasingly stronger compressions

Image based on Dresden Image Database

Consistency Assessment with the Color Descriptor

A more realistic scenario: Are **different regions** in an image **consistent**?

- Training on VISION Database, Test on Dresden Image Database
- Test splices: combine same scene from different cameras
- Assess patch-based consistency of reference and target region
- Repeat for increasingly stronger compressions

Image based on Dresden Image Database

Huh et al.: "Fighting Fake News: Image Splice Detection via Learned Self-Consistency", ECCV '18 Cozzolino et al.: "Splicebuster: A new blind image splicing detector", WIFS '15

Outlook: Qualitative Results

Outlook: Qualitative Results

Hadwiger et al.: Towards Learned Color Representations for Image Splicing Detection, ICASSP 2019

Hadwiger et al.: Towards Learned Color Representations for Image Splicing Detection, ICASSP 2019

Hadwiger et al.: Towards Learned Color Representations for Image Splicing Detection, ICASSP 2019

Conclusion

- We presented a novel cue based on color image formation
- We demonstrated remarkable robustness against JPEG compression
- Promising to work in low-quality settings

Ongoing work

- Incorporate prior knowledge on camera
- Perform consistency assessment using Siamese network

Thank you!

Questions?

