Every Rating Matters:

Joint Learning of Subjective Labels and Individual Annotators for Speech Emotion Classification

Huang-Cheng (David) Chou, Chi-Chun (Jeremy) Lee

Department of Electrical Engineering, National Tsing Hua University (NTHU), Hsinchu City, Taiwan

Full Paper: https://ieeexplore.ieee.org/abstract/document/8682170

Slides: https://sigport.org/documents/every-rating-matters-joint-learning-subjective-labels-and-individual-annotators-speech

Overview

Purpose:

Speech emotion classification from acoustic features

Task: 4 categories (Neutral, Happiness, Sadness, Anger)

Overview

Purpose:

Speech emotion classification from acoustic features

Task: 4 categories (Neutral, Happiness, Sadness, Anger)

Novelty:

A joint learning of subjective labels and individual annotators, utilizing soft-label and hard-label

- Use every rating (which are ignored in the previous works)
- Model individual annotators emotion perception

Overview

Purpose:

Speech emotion classification from acoustic features

√ Task: 4 categories (Neutral, Happiness, Sadness, Anger)

Novelty:

To joint learning of subjective labels and individual annotators, utilizing **soft-label and hard-**label (conventional methods)

- ✓ Use every rating (which are ignored in the previous works)
- ✓ Model individual annotators emotion perception

Results:

- Unweighted Accuracy Recall (UAR): 57.12 % → 61.48 %

Background

What the...what am I doing?

Sadness, Anger

Sadness

Sadness, Anger

Background

Emotion perception is subjective because the natural bias of human, such as gender, age, and culture

What the...what am I doing?

Sadness, Anger

Sadness

Sadness, Anger

Suzuki, Atsunobu, et al. "Decline or improvement?: Age-related differences in facial expression recognition." Biological psychology 74.1 (2007): 75-84. Hall, Judith A., and David Matsumoto. "Gender differences in judgments of multiple emotions from facial expressions." Emotion 4.2 (2004): 201. Matsumoto, David. "American-Japanese cultural differences in the recognition of universal facial expressions." Journal of cross-cultural psychology 23.1 (1992): 72-84.

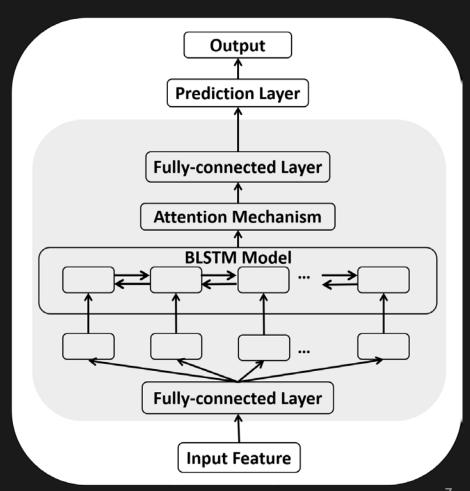
Conventional Method

Frame-level acoustic features + BLSTM-RNNs with Attention

Frame-level Features:

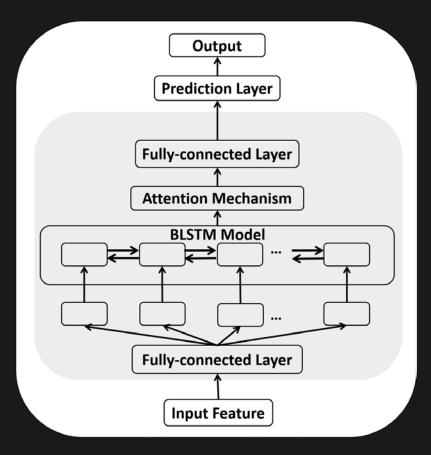
Pitch(F0), MFCCs, energy, loudness, voice probability, zero cross rate, ... etc

(All features are extracted by openSMILE toolbox)



Conventional Method

Use local attention to find specific emotional regions of each utterance



Data Label Preprocessing

Consensus (used in conventional method):

- Majority vote of annotations
- => Train emotion recognizer

Data Label Preprocessing

Working for corporate America? Wow.

Data

Rating Others Sadness Sadness

Majority vote of ratings

Ground Truth Usage

Sadness

Conventional Hard-label Training

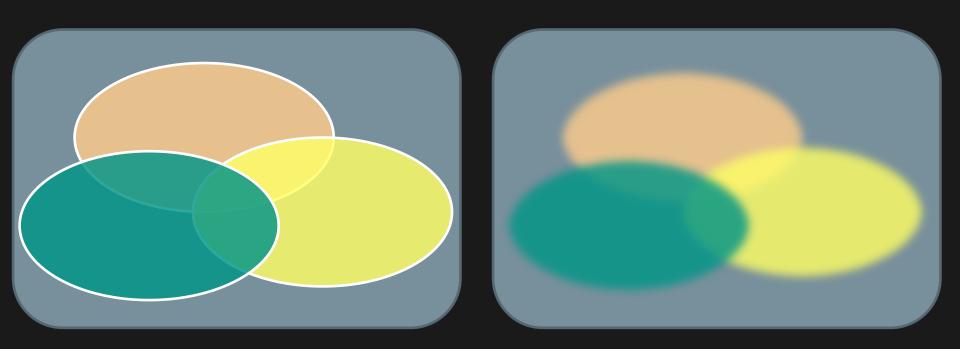
Model parameters are update by cross-entropy loss:

$$Loss = -\sum_{k=1}^{N} (pk * logqk),$$
 $q_k = [0, 0, 1, 0]$ 1.0

 $k = Total\ emotion\ classes$

Neu. Hap. Sad. Ang.

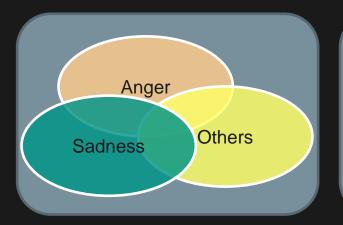
The boundaries between categories of emotion are fuzzy rather than discrete



Discrete boundaries

Fuzzy boundaries

It just like the same music brings different sense of emotion feelings to different people



Discrete boundaries

Fuzzy boundaries

Emotion annotation can naturally have disagreement and be ambiguous

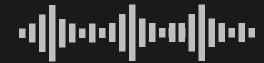
Emotion annotation can naturally have disagreement and be ambiguous

The hard label loses

- → The variability of annotations
- → The subjectivity in the emotion perception

Conventional Method Problem - Why

Working for corporate America? Wow.



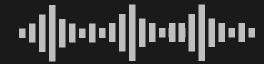
Conventional Hard-label

Rating Others Sadness Anger

Ground Truth Usage

Conventional Method Problem - Why

Working for corporate America? Wow.



Conventional Hard-label

Rating Others Sadness Anger

No Consensus

Ground Truth Usage

Conventional Method Problem - Why

Working for corporate America? Wow.

Conventional Hard-label

Rating Others Sadness Anger

Ground Truth Usage

No use -> Training data limitation

Soft-label Training

To address training data limitation

$$q(c_k) = \frac{\sum_{n} h_k^{(n)}}{\sum_{k'} \sum_{n} h_{k'}^{(n)}}$$

$$h_k^{(n)} = Binary \ label - existence(0/1),$$

 $n - th \ annotator, k - th \ emotion \ class$

Soft-label Training

To solve training data limitation

$$q(c_k) = \frac{\alpha + \sum_{n} h_k^{(n)}}{\alpha K + \sum_{k'} \sum_{n} h_{k'}^{(n)}}$$

 $\alpha = Smoothing coefficient$ k = Total emotion classes

$$h_k^{(n)} = Binary \ label - existence(0/1),$$

 $n - th \ annotator, k - th \ emotion \ class$

Conventional Soft-label Method Problem - Why

What the...what am I doing?

Conventional Soft-label

Rating

Sadness, Anger

Sadness

Anger, Sadness

Emotional information lose

Ground Truth Usage

Sadness

Sadness

Anger

Conventional Soft-label Method Problem - Why

What the...what am I doing?

Conventional Soft-label

Rating

Sadness, Anger

Sadness

Anger, Sadness

Ground Truth Usage

S

Sadness

Sadness

Anger

Only used one of them

Conventional Soft-label Method Problem - Why

Use one rating

Conventional Soft-label

Rating

Ground

Truth

Usage

Sadness,

Sadness

Anger, Sadness

Sadness Sadness

Anger

Use every rating

Modified Soft-label

Sadness, Anger

Sadness

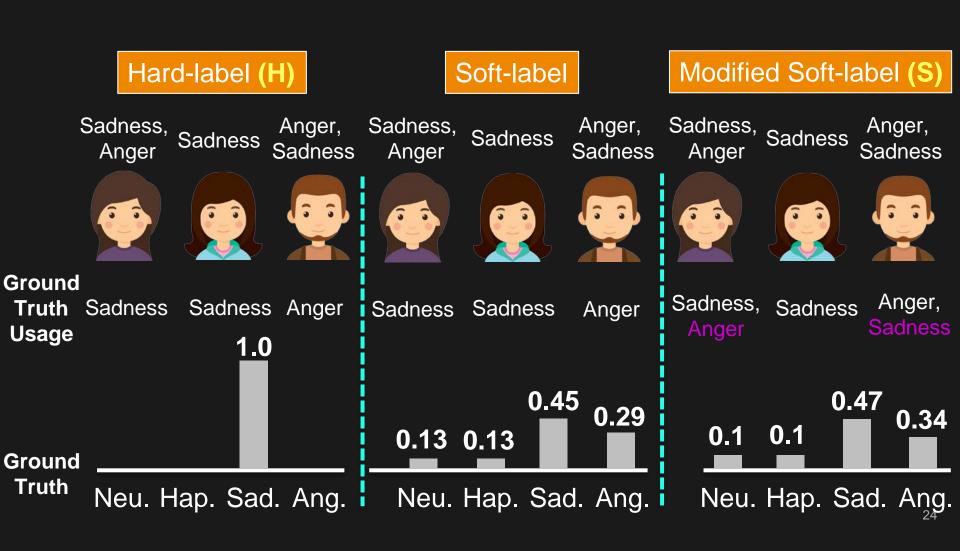
Anger, Sadness

Sadness, Anger

Sadness

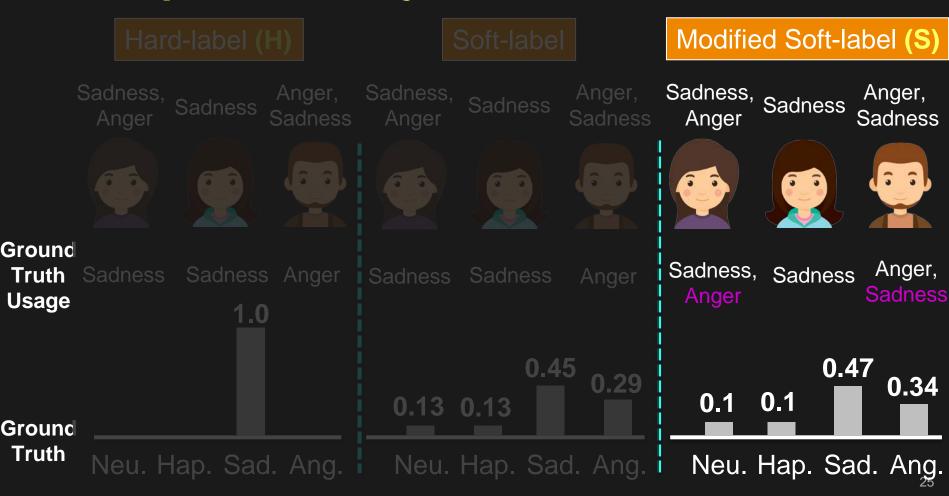
Anger, Sadness

3 Different Method Targets



3 Different Method Targets

Modified soft ground truth is useful to represent subjective emotional *clues*



Model Emotional Sensitivity

- ✓ Use every rating
- ✓ Build individual annotator's emotion perception sensitivity model

Fang, Xia, Gerben A. van Kleef, and Disa A. Sauter. "Revisiting cultural differences in emotion perception between easterners and westerners: Chinese perceivers are accurate, but see additional non-intended emotions in negative facial expressions." *Journal of Experimental Social Psychology* 82 (2019): 152-159. Fischer, Agneta H., Mariska E. Kret, and Joost Broekens. "Gender differences in emotion perception and self-reported emotional intelligence: A test of the emotion sensitivity hypothesis." *PloS one* 13.1 (2018): e0190712.

Montagne, Barbara, et al. "Sex differences in the perception of affective facial expressions: Do men really lack emotional sensitivity?." *Cognitive processing* 6.2 (2005): 136-141.

Martin, Rod A., et al. "Emotion perception threshold: Individual differences in emotional sensitivity." *Journal of Research in Personality* 30.2 (1996): 290-305. 26 McCluskey, Ken W., and Daniel C. Albas. "Perception of the emotional content of speech by Canadian and Mexican children, adolescents, and adults." *International Journal of Psychology*16.1-4 (1981): 119-132.

Model Emotional Sensitivity

- ✓ Build individual annotator's emotion perception sensitivity model
- Emotional sensitivity is different from person to person because the natural bias of human, like gender, age, and culture

Fang, Xia, Gerben A. van Kleef, and Disa A. Sauter. "Revisiting cultural differences in emotion perception between easterners and westerners: Chinese perceivers are accurate, but see additional non-intended emotions in negative facial expressions." *Journal of Experimental Social Psychology* 82 (2019): 152-159. Fischer, Agneta H., Mariska E. Kret, and Joost Broekens. "Gender differences in emotion perception and self-reported emotional intelligence: A test of the emotion sensitivity hypothesis." *PloS one* 13.1 (2018): e0190712.

Montagne, Barbara, et al. "Sex differences in the perception of affective facial expressions: Do men really lack emotional sensitivity?." *Cognitive processing* 6.2 (2005): 136-141.

Martin, Rod A., et al. "Emotion perception threshold: Individual differences in emotional sensitivity." *Journal of Research in Personality* 30.2 (1996): 290-305. 27 McCluskey, Ken W., and Daniel C. Albas. "Perception of the emotional content of speech by Canadian and Mexican children, adolescents, and adults." *International Journal of Psychology*16.1-4 (1981): 119-132.

Model Emotional Sensitivity - Why

People use to understand our own emotional experience also helps us understand the emotions of others

Individual annotator models

Experiments

Purpose:

- Use different types of label (H label/S label) for training
- 2. Model individual annotators emotion perception
- Joint all-annotators (Crowd) and individual model (E_N)

Experiments

Purpose:

- Use different types of label (H label & S label) for training
- 2. Model individual annotators emotion perception
- Joint all-annotators (Crowd) and individual model (E_N)

Experiments

Dataset: **IEMOCAP** Database [Busso+, 08]

- Task: Dyadic emotional interaction (1 male, 1 female)
- Total # of session: 5
- Total # of speakers: 10 (train: 8, test: 2 / per session)
- Average # of annotators / per each utterance: 3 (self, observe)
- # of chose individual annotators (observe): 5

Data Usage

Purpose:

- Use H label and S label for train
- 2. Model 5 observed annotators emotion perception $(E_1 \sim E_5)$
- 3. Joint Crowd and E_N (will be discussed in the setups)

The # of S and H label utterance for each model					
Model	Total	Soft label	Hard label		
$Crowd_H$	5531	0	5531		
$Crowd_S$	7774	3185	4589		
E1	5954	44	5910		
E2	7845	38	7807		
E4	6429	212	6217		
<i>E</i> 5	422	3	419		
E6	773	20	753		

Data Usage

Purpose:

1. Use H label and S label for train

All-annotators model:

- H: use hard-label
- S: use soft-label (Baseline)

The # of S and H label utterance for each model					
Model	Total	Soft label	Hard label		
$Crowd_H$	5531	0	5531		
Crowd _s	7774	3185	4589		
E1	5954	44	5910		
E2	7845	38	7807		
E4	6429	212	6217		
<i>E</i> 5	422	3	419		
E6	773	20	753		

Data Usage

Purpose:

2. Model 5 observed annotators emotion perception ($E_1 \sim E_5$)

All-annotators model:

- H: use hard-label
- S: use soft-label (Baselines)

Individual model:

Use soft-label

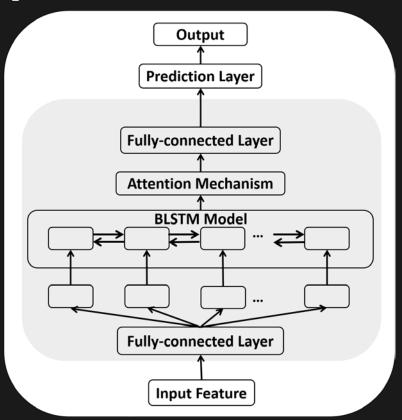
The # of S and H label utterance for each model					
Model	Total	Soft label	Hard label		
$Crowd_H$	5531	0	5531		
$Crowd_{S}$	7774	3185	4589		
E1	5954	44	5910		
E2	7845	38	7807		
E4	6429	212	6217		
<i>E</i> 5	422	3	419		
E6	773	20	753		

Setups

Classifier: BLSTM with attention [Ando +, 2018]

Main Structure

[Dense,256]-[BLSTM with attention,128]- [Dense,256]



Setups

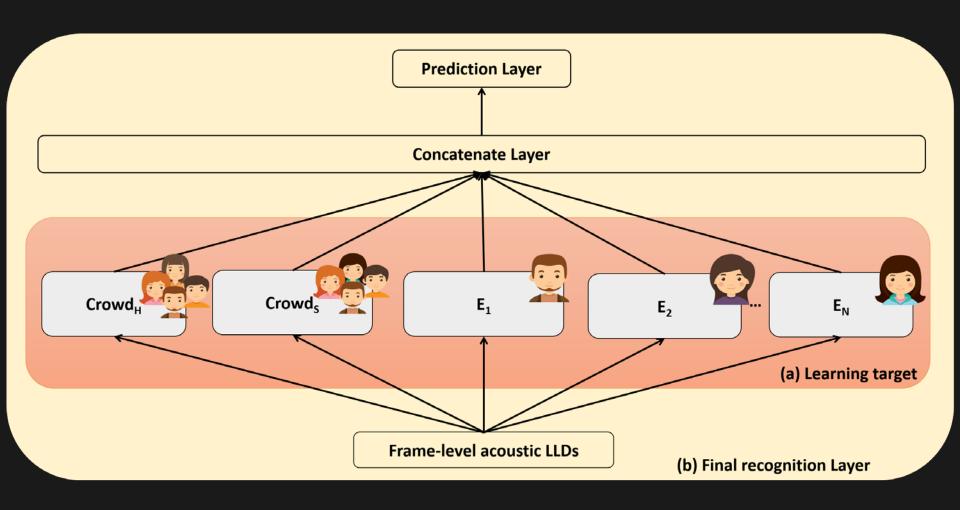
- Classifier: BLSTM with attention [Ando +, 2018]
- Main Structure
 - [Dense, 256]-[BLSTM with attention, 128]- [Dense, 256]
- Input: acoustic low level descriptors (LLDs), 45 dims.
 - 12 MFCCs, Δ12 MFCCs, ΔΔ12 MFCCs,
 - Loudness, ∆ Loudness, ∆∆ Loudness
 - Pitch (F0), Δ Pitch (F0), Probability of voicing,
 Δ Probability of voicing,
 - Zero-crossing rate, ∆ Zero-crossing rate

Setups

Classifier: BLSTM with attention [Ando +, 2018]

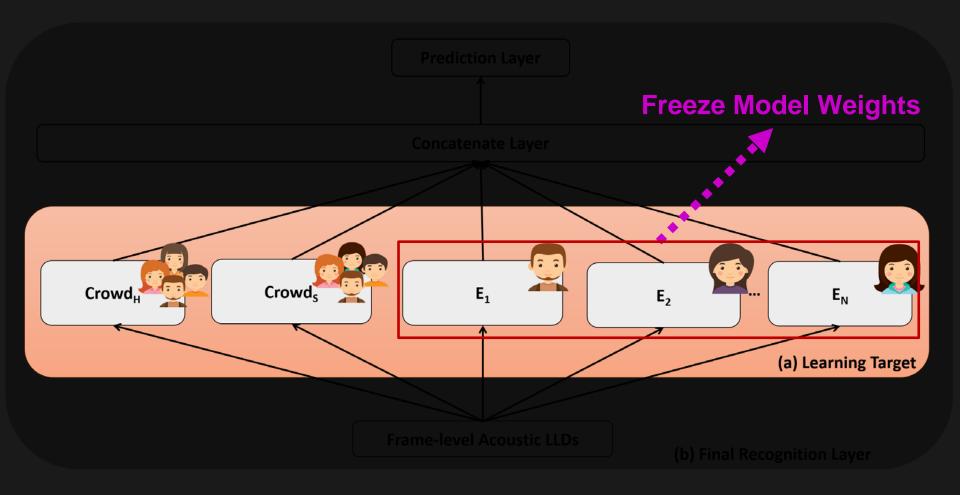
- Main Structure
 - [Dense, 256]-[BLSTM with attention, 128]- [Dense, 256]
- Input: acoustic low level descriptors (LLDs), 45 dims.
 - 。 12 MFCCs, ∆12 MFCCs, ∆∆12 MFCCs,
 - Loudness, ∆ Loudness, ∆∆ Loudness
 - Pitch (F0), △ Pitch (F0), Probability of voicing,
 △ Probability of voicing,
 - Zero-crossing rate, ∆ Zero-crossing rate
- Target: Hard-label (one-hot label) when testing
- Evaluation measure: Unweighted Accuracy Recall (UAR)
- Average results of 5 sessions (Leave-one-session-out)

Joint Crowd and E_N



Joint Crowd and E_N

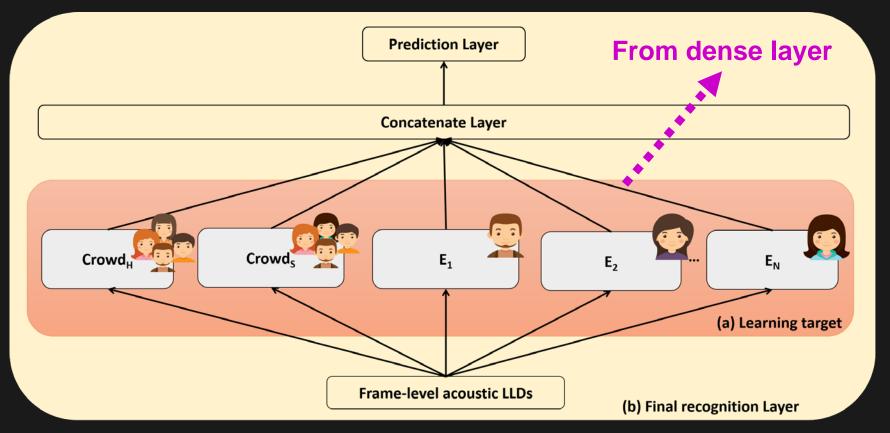
Stage-1: Train E_N models and Crowd models



Joint Crowd and E_N

Stage-1: Train E_N models and Crowd models

Stage-2: Use stage weights, train some epochs; then recognition (Fix E_N weights)



Our proposed model achieves unweighted average recall (UAR) 61.48%

Model	Overall	Neutral	Anger	Happiness	Sadness
$\mathit{Crowd}_{\mathit{H}}$	57.45%	55.71%	63.29%	45.02%	65.77%
$\mathit{Crowd}_{\mathit{S}}$	57.12%	49.70%	62.98%	62.85%	53.14%
<i>E</i> 1	50.98%	8.04%	61.31%	77.24%	57.34%
E2	59.68%	38.78%	64.35%	64.25%	62.61%
<i>E</i> 4	48.59%	81.29%	45.42%	38.20%	29.44%
<i>E</i> 5	37.62%	86.89%	47.62%	11.21%	4.75%
<i>E</i> 6	45.82%	36.85%	40.10%	60.39%	45.95%
$\mathit{Crowd}_{\mathit{HS}}$	58.58%	59.66%	59.31%	53.63%	61.71%
Proposed	61.48%	54.55%	64.51%	60.32%	66.56%

$Crowd_S$ obtains a better recognition rate for happiness compared to $Crowd_H$

Model	Overall	Neutral	Anger	Happiness	Sadness
Crowd _H	57.45%	55.71%	63.29%	45.02%	65.77%
Crowd _s	57.12%	49.70%	62.98%	62.85%	53.14%
<i>E</i> 1	50.98%	8.04%	61.31%	77.24%	57.34%
<i>E</i> 2	59.68%	38.78%	64.35%	64.25%	62.61%
<i>E</i> 4	48.59%	81.29%	45.42%	38.20%	29.44%
<i>E</i> 5	37.62%	86.89%	47.62%	11.21%	4.75%
<i>E</i> 6	45.82%	36.85%	40.10%	60.39%	45.95%
$\mathit{Crowd}_{\mathit{HS}}$	58.58%	59.66%	59.31%	53.63%	61.71%
Proposed	61.48%	54.55%	64.51%	60.32%	66.56%

$Crowd_H$ works better for neutral and sadness than $Crowd_S$

Model	Overall	Neutral	Anger	Happiness	Sadness
$\mathbf{Crowd}_{\mathbf{H}}$	57.45%	55.71%	63.29%	45.02%	65.77%
Crowd _s	57.12%	49.70%	62.98%	62.85%	53.14%
<i>E</i> 1	50.98%	8.04%	61.31%	77.24%	57.34%
E2	59.68%	38.78%	64.35%	64.25%	62.61%
<i>E</i> 4	48.59%	81.29%	45.42%	38.20%	29.44%
<i>E</i> 5	37.62%	86.89%	47.62%	11.21%	4.75%
<i>E</i> 6	45.82%	36.85%	40.10%	60.39%	45.95%
$\mathit{Crowd}_{\mathit{HS}}$	58.58%	59.66%	59.31%	53.63%	61.71%
Proposed	61.48%	54.55%	64.51%	60.32%	66.56%

E1 and E2 models are good at telling anger and happiness

Model	Overall	Neutral	Anger	Happiness	Sadness
$\mathit{Crowd}_{\mathit{H}}$	57.45%	55.71%	63.29%	45.02%	65.77%
$\mathit{Crowd}_{\mathit{S}}$	57.12%	49.70%	62.98%	62.85%	53.14%
E1	50.98%	8.04%	61.31%	77.24%	57.34%
E2	59.68%	38.78%	64.35%	64.25%	62.61%
<i>E</i> 4	48.59%	81.29%	45.42%	38.20%	29.44%
<i>E</i> 5	37.62%	86.89%	47.62%	11.21%	4.75%
<i>E</i> 6	45.82%	36.85%	40.10%	60.39%	45.95%
$\mathit{Crowd}_{\mathit{HS}}$	58.58%	59.66%	59.31%	53.63%	61.71%
Proposed	61.48%	54.55%	64.51%	60.32%	66.56%

E4 and E5 models are good at telling neutral

Model	Overall	Neutral	Anger	Happiness	Sadness
$\mathit{Crowd}_{\mathit{H}}$	57.45%	55.71%	63.29%	45.02%	65.77%
$\mathit{Crowd}_{\mathit{S}}$	57.12%	49.70%	62.98%	62.85%	53.14%
<i>E</i> 1	50.98%	8.04%	61.31%	77.24%	57.34%
E2	59.68%	38.78%	64.35%	64.25%	62.61%
E4	48.59%	81.29%	45.42%	38.20%	29.44%
E5	37.62%	86.89%	47.62%	11.21%	4.75%
<i>E</i> 6	45.82%	36.85%	40.10%	60.39%	45.95%
$\mathit{Crowd}_{\mathit{HS}}$	58.58%	59.66%	59.31%	53.63%	61.71%
Proposed	61.48%	54.55%	64.51%	60.32%	66.56%

E6 model is sensitive to Happiness

Model	Overall	Neutral	Anger	Happiness	Sadness
$\mathit{Crowd}_{\mathit{H}}$	57.45%	55.71%	63.29%	45.02%	65.77%
$Crowd_S$	57.12%	49.70%	62.98%	62.85%	53.14%
<i>E</i> 1	50.98%	8.04%	61.31%	77.24%	57.34%
E2	59.68%	38.78%	64.35%	64.25%	62.61%
<i>E</i> 4	48.59%	81.29%	45.42%	38.20%	29.44%
<i>E</i> 5	37.62%	86.89%	47.62%	11.21%	4.75%
E6	45.82%	36.85%	40.10%	60.39%	45.95%
$\mathit{Crowd}_{\mathit{HS}}$	58.58%	59.66%	59.31%	53.63%	61.71%
Proposed	61.48%	54.55%	64.51%	60.32%	66.56%

Conclusion

Summary:

- Purpose: speech emotion classification from acoustic LLDs
- Approach: Utilizing every rating to model subjective labels and individual annotators
- Method: Soft-label and hard-label joint learning
- Results: Performances were improved
 - $_{\circ}$ 57.45% [$Crowd_{H}$] \rightarrow 61.48% (3.18%)
 - $_{\circ}$ 57.12% [$Crowd_{S}$] \rightarrow 61.48% (4.36%)

Future works:

- Evaluations by other language emotion dataset, such as NNIME database [Chou+, 2017]
- Test on personalized emotion perception recognition

Reviewers' Questions

Potential Issues

Why use soft-label for training but evaluate on hard-label?

Potential Issues

- Why soft-label training improves model performance?
- Because the training data increased, we get the same finding with previous works [Ando+, 18]
 and [Kim+, 18].

Potential Issues

How is the robustness for modeling individual annotators? If we remove 1 or 2 annotator from training process, does this model can still work?

Annotation distribution (ratio)

Note: if two (or more) ratings for one data from annotator, we will calculate by 2 (or more).

Model	Neutral	Anger	Happiness	Sadness
$Crowd_H$	30.88%	19.94%	29.58%	19.60%
$Crowd_S$	29.33%	17.77%	35.79%	17.10%
E1	8.49%	21.21%	49.67%	20.64%
E2	22.45%	26.58%	31.35%	19.62%
E4	52.88%	12.41%	23.76%	10.95%
E 5	69.88%	15.29%	8.94%	5.88%
E6	26.73%	15.76%	43.38%	14.22%

Results (Only E_N Model)

 $\boldsymbol{E}_{\mathrm{N}}$ model is sensitive to Happiness, Anger, and Sadness. Instead, Crow model has good recognition rate for Neutral

Model	Overall	Neutral	Anger	Happiness	Sadness
$\mathit{Crowd}_{\mathit{H}}$	57.45%	55.71%	63.29%	45.02%	65.77%
$Crowd_S$	57.12%	49.70%	62.98%	62.85%	53.14%
<i>E</i> 1	50.98%	8.04%	61.31%	77.24%	57.34%
<i>E</i> 2	59.68%	38.78%	64.35%	64.25%	62.61%
E4	48.59%	81.29%	45.42%	38.20%	29.44%
<i>E</i> 5	37.62%	86.89%	47.62%	11.21%	4.75%
<i>E</i> 6	45.82%	36.85%	40.10%	60.39%	45.95%
$Crowd_{HS}$	58.58%	59.66%	59.31%	53.63%	61.71%
\boldsymbol{E}_{N}	60.24%	49.64%	63.64%	61.48%	66.19%
Proposed	61.48%	54.55%	64.51%	60.32%	66.56%

Thank You

Full Paper: https://ieeexplore.ieee.org/abstract/document/8682170

Slides: https://sigport.org/documents/every-rating-matters-joint-learning-subjective-labels-and-individual-annotators-speech

Question?

Full Paper: https://ieeexplore.ieee.org/abstract/document/8682170

Slides: https://sigport.org/documents/every-rating-matters-joint-learning-subjective-labels-and-individual-annotators-speech