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• Why boost accurate prefix ??

– Training by boosting correct prefixes (accurate) over wrong prefixes will 
help model to rectify its own errors



Encoder - Decoder

• Encoder: 

– recurrent layers 

– entire input sequence to fixed-length vector

•  Decoder: 

– recurrent layers with final softmax layer

– predict probability for the next symbol of the output sequence in an 

auto-regressive fashion

– learns an implicit language model for the output sequences
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Problem Overview
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● Exposure  bias

● Training:  output character is conditioned on the previous true 
character

● Testing:  the model needs to rely on its own previous predictions

● Error  criterion  mismatch

● Training: the objective is the conditional maximum likelihood (cross 
entropy) for  maximizing the probability of the correct sequence

● Testing: Character  error  rate  (CER)  or  word  error  rate (WER) 



Mismatch during train and decode
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Hypothesis

TrainingTraining: Minimize cross-entropy loss of each target token      (character)

Teacher-forcingTeacher-forcing: Feed previous token from ground-truth as auxiliary info to 
                    predict current token

True seq      :    ABB



Mismatch during train and decode

8

Hypothesis

B

A
B

A
B

A

B

A
B

A

A

<sos>

DecodingDecoding:
 
● Previous token from hypothesis is fed to predict current token

● Output sequence is predicted in two ways
● Greedy (argmax) searchGreedy (argmax) search 
● Beam search

True seq :         ABB
Argmax seq :    BAB
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Modify training procedure ??
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Decrease the training loss for both reference and predicted paths !!Decrease the training loss for both reference and predicted paths !!

Training is matched to testingTraining is matched to testing
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Scheduled sampling
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 S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sampling  for  sequence  prediction  with  recurrent  
neural  networks,”  in Advances  in  Neural  Information  Processing  Systems, pp. 1171–1179, 2015



Scheduled sampling
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Baseline (Teacher-forcing) SS (50% predictions) SS (100% predictions) SS (50% to 100% predictions)
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Observations
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Is there a technique to train only Is there a technique to train only 

with predictions as previous tokens ??with predictions as previous tokens ??



Mismatch during train and decode
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DecodingDecoding:
 
● Previous token from hypothesis is fed to predict current token

● Output sequence is predicted in two ways
● Greedy (argmax) search 
● Beam searchBeam search



Beam search
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Beam searchBeam search
● heuristic approach where only the most promising (S) nodes at each step 

of the search are retained for further branching
● B – beam size / width (S = 2 in the figure)
● Efficient Memory usage
● Used to generate N-best list of paths
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True seq               :    ABB
Beam search seq :    ABB 



Beam search
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How to match beam-search decoding with training ??How to match beam-search decoding with training ??

● Need to consider multiple hypothesis generated during beam-search

● Training objective must keep prefix at top of the beam

● Helps to survive pruning by keeping scores higher in the beam
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Beam search
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Beam search
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Beam search
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Beam search
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Beam search
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Beam search
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Beam search
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How to match beam-search decoding with training ??How to match beam-search decoding with training ??

● Need to consider multiple hypothesis generated during beam-search

● Training objective must keep prefix at top of the beam
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Maximum margin objective
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Promising accurate prefix boosting (PAPB)
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● Hard maximum is replaced by soft maximum “softmax”

● Softmax margin* showed noticeable gains over max margin empirically

● Generalization of boosted MMI (bMMI) criterion

* K.  Gimpel  and  N.  A.  Smith,  “Softmax-margin  training  for structured log-linear models,” 2010



Promising accurate prefix boosting (PAPB)
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% WER on held-out set with PAPB
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Comparison with sequence-level objective
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● Sequence-level optimization technique: Minimum Bayes Risk Criterion*

● Obtain sequence predictions from model distribution and backpropagate a 
sequence-level objective

●       denotes the N-best sequences selected using beam search

*  R. Prabhavalkar, T. N. Sainath, Y. Wu, P. Nguyen, Z. Chen, C.-C. Chiu, and A. Kannan, “Minimum word error rate 
training for attention-based sequence-to-sequence models,” in ICASSP, 2018, pp. 4839–4843, IEEE, 2018



CER on held-out set with PAPB
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Impact of pretraining and CE regularization
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Y N Hard to train - 14.9 27.5

N Y 13.8 16.7 11.5 6.1
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Impact of pretraining and CE regularization
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CE Pretraining
MBR 

(%WER)
% Rel. drop 

PAPB
(%WER)

% Rel. drop 

Y Y 11.5 - 10.8 -

Y N Hard to train - 14.9 27.5

N Y 13.8 16.7 11.5 6.1

● Pretraining is crucial for sequence-level objective such as MBR training

● PAPB did show convergence without pretraining

● CE regularization provides 6.1 % and 16.7% relative gain for PAPB and MBR



Recognition performance on WSJ corpus
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Effect of LM on token level, sequence level and prefix (partial sequence) level training

Model type
No RNNLM Character RNNLM Word RNNLM

%CER %WER %CER %WER %CER %WER

CE 4.6 12.9 2.5 5.8 2.0 4.8

MBR 4.3 11.5 2.5 5.4 2.1 4.3

PAPB 4.0 10.8 2.1 4.5 2.0 3.8

Deep-CNN* - 10.5 - - - -

OCD* - 9.6 - - - -

LF-MMI* - - - - - 4.1



Recognition performance (%WER) on Librispeech 
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Effect of LM on token level, sequence level and prefix (partial sequence) level training

Model type
(%WER)

No RNNLM Word RNNLM

test-clean test-other test-clean test-other

CE 6.7 21.5 4.0 12.7

MBR 5.5 17.4 3.7 11.3

PAPB 4.7 15.1 3.1 9.8

OCD* 4.5 13.3 - -

LF-MMI* - - 3.8 8.7

 
* https://github.com/kaldi-asr/kaldi/blob/master/egs/librispeech/s5/local/chain/tuning/run_tdnn_1d.sh



Conclusion and Constraints
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● Prefix boosting with softmax-margin objective provides considerable gains

● Effective compared to sequence-level MBR objective

● Beam-search is not an efficient method to run with GPU

● 2-fold increase in training time

● Constraint in setting larger training beam-size

● Future work will be to use sampling approach instead of beam-search
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