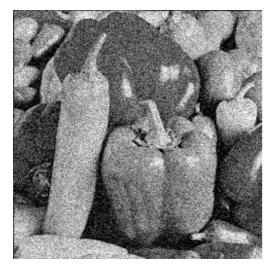
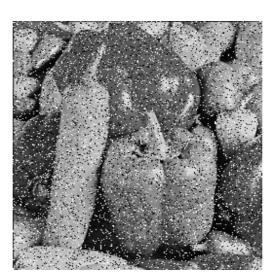
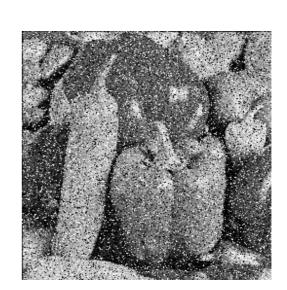
Blind Denoising of Mixed Gaussian-Impulse Noise by Single CNN


Ryo Abiko Masaaki Ikehara


Introduction

▶ We propose a mixed noise removal method.


The mixture of Additive White Gaussian Noise (AWGN) and Impulse Noise (IN) is considered.

Additive White Gaussian Noise

Random Value Impulse Noise

AWGN-RVIN mixed noise

Our proposed method is based on CNN.

Type of noise

Additive White Gaussian Noise (AWGN)

$$y_G(i,j) = x(i,j) + n_G(i,j)$$

Caused by thermal motion in camera sensors

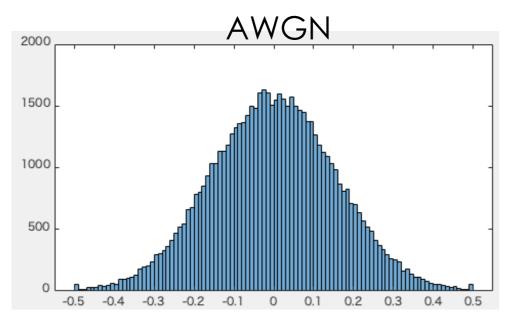
- Random Valued Impulse Noise (RVIN)
- Salt-and-Pepper Impulse Noise (SPIN)

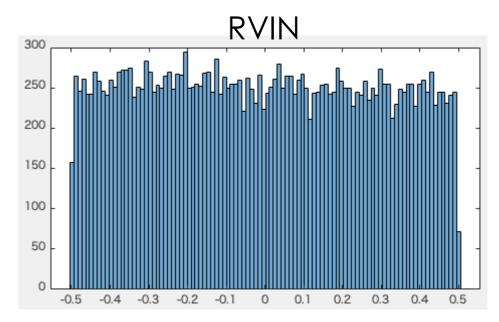
$$y_I(i,j) = n_I(i,j)$$
 with probability $p(RVIN), s(SPIN)$

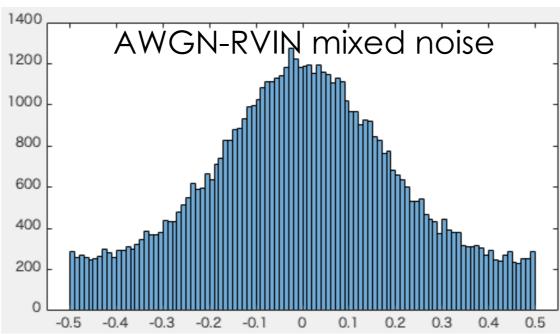
Caused by transmission error

Mixed noise

© Generally, it is rare that only one type of noise is added.


Mixed noise composed of <u>AWGN</u> and <u>IN</u> is considered.

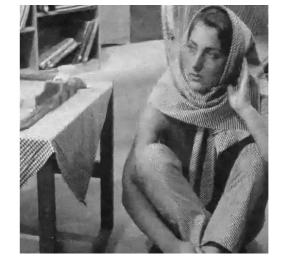

$$y(i,j) = \begin{cases} n_{RVIN}(i,j) & with \ probability \quad p \\ n_{SPIN}(i,j) & with \ probability \quad s \\ x(i,j) + n_{AWGN}(i,j) & with \ probability \ 1 - p - s \end{cases}$$


y(i,j): noisy pixel x(i,j): noise-free pixel $n_{RVIN}(i,j)$: Random Valued Impulse noise (RVIN) $n_{SPIN}(i,j)$: Salt and Pepper Impulse noise (SPIN) $n_G(i,j)$: Additive White Gaussian noise (AWGN)

Mixed noise

- Mixed noise removal is more difficult than single noise removal.
 - → Because the noise distribution model is complicated

Mixed noise


 Denoising method for single noise removal cannot remove mixed noise effectively.

DnCNN

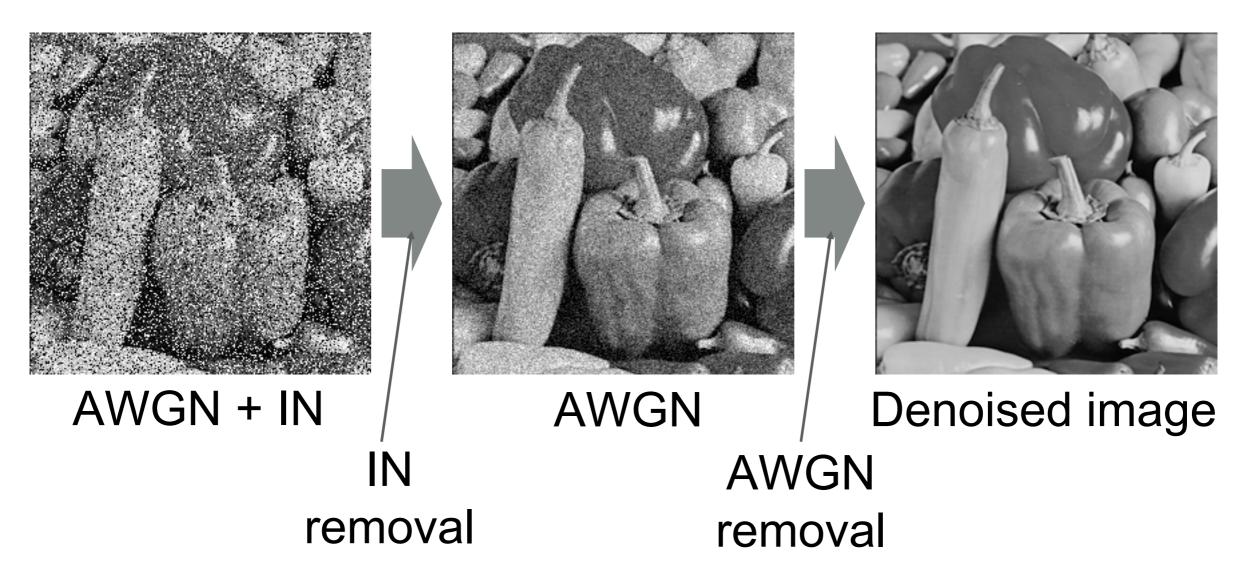
Single noise $\sigma = 30$ (AWGN)



26.05 dB

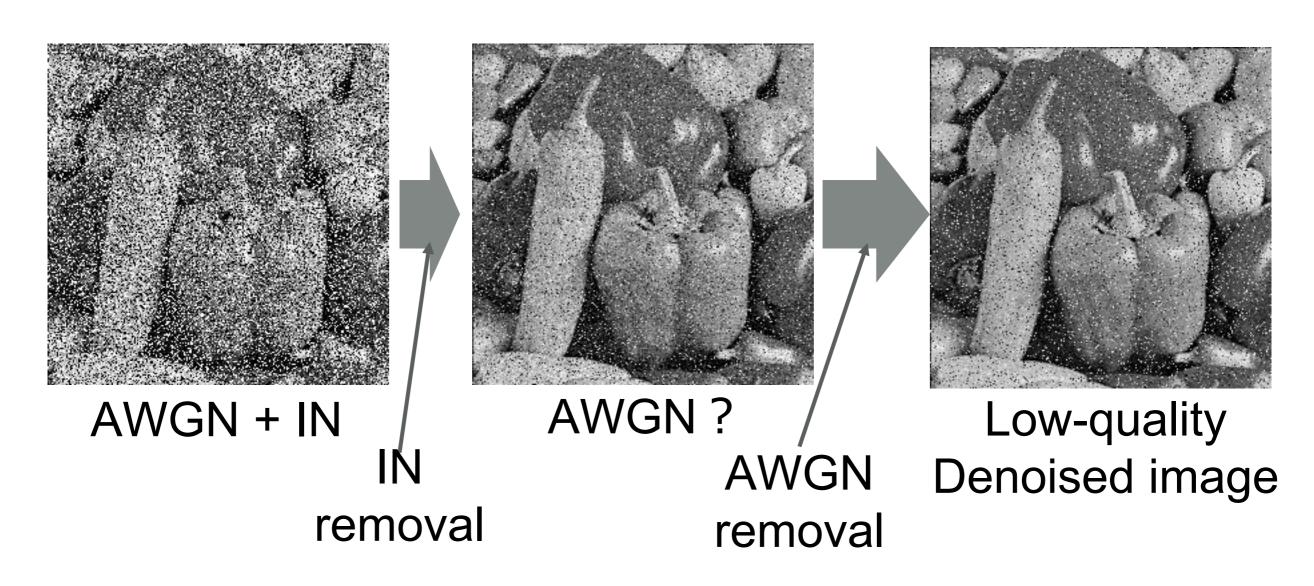
Mixed noise $\sigma = 30$ (AWGN) p = 10 (RVIN)

Noisy image



Denoised image

23.75 dB

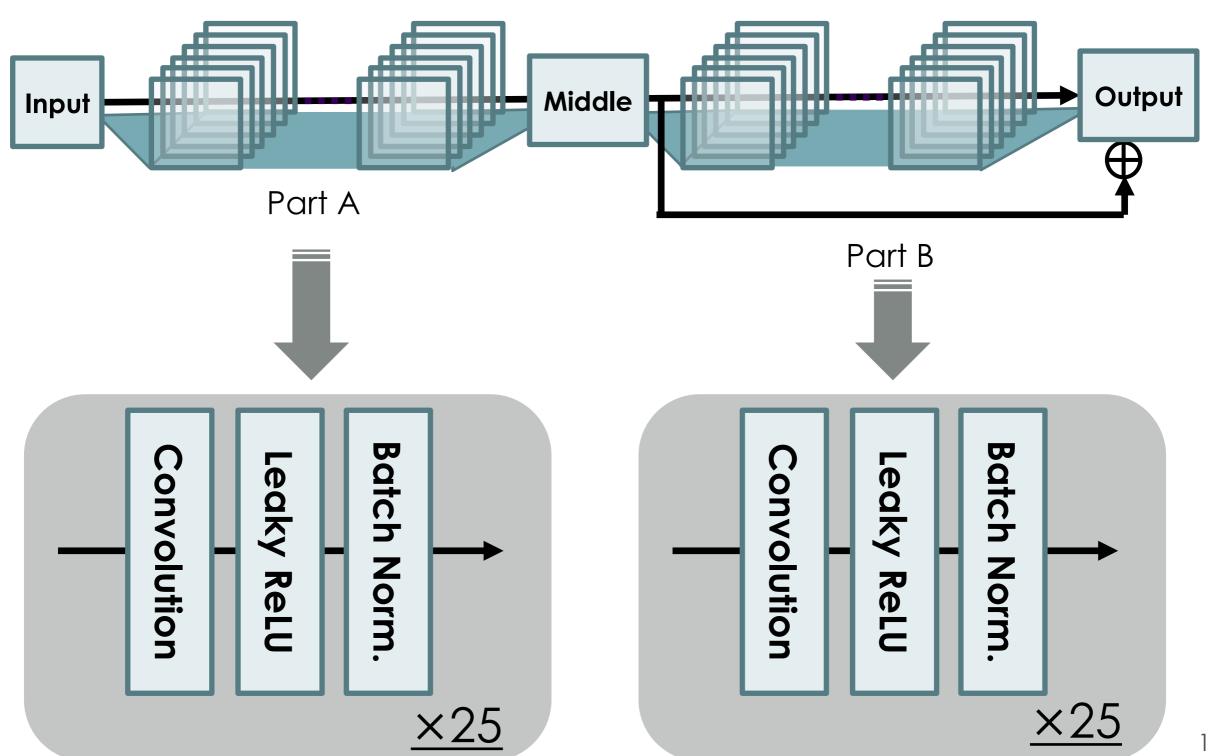

Problem

Problem

IN detection & removal becomes difficult when the noise level is high.

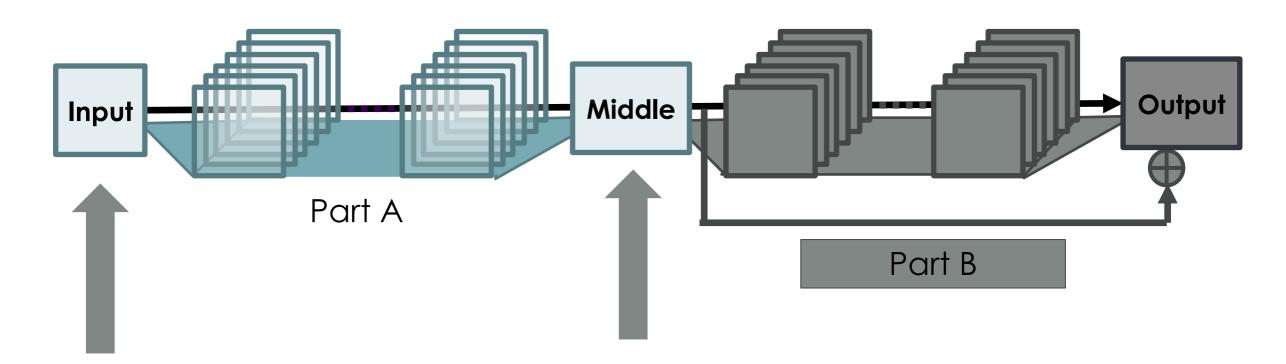
→ If the IN removal does not work well, subsequent AWGN removal will be adversely affected.

Proposed method


Our method

→ All denoise processing is performed in a single CNN.

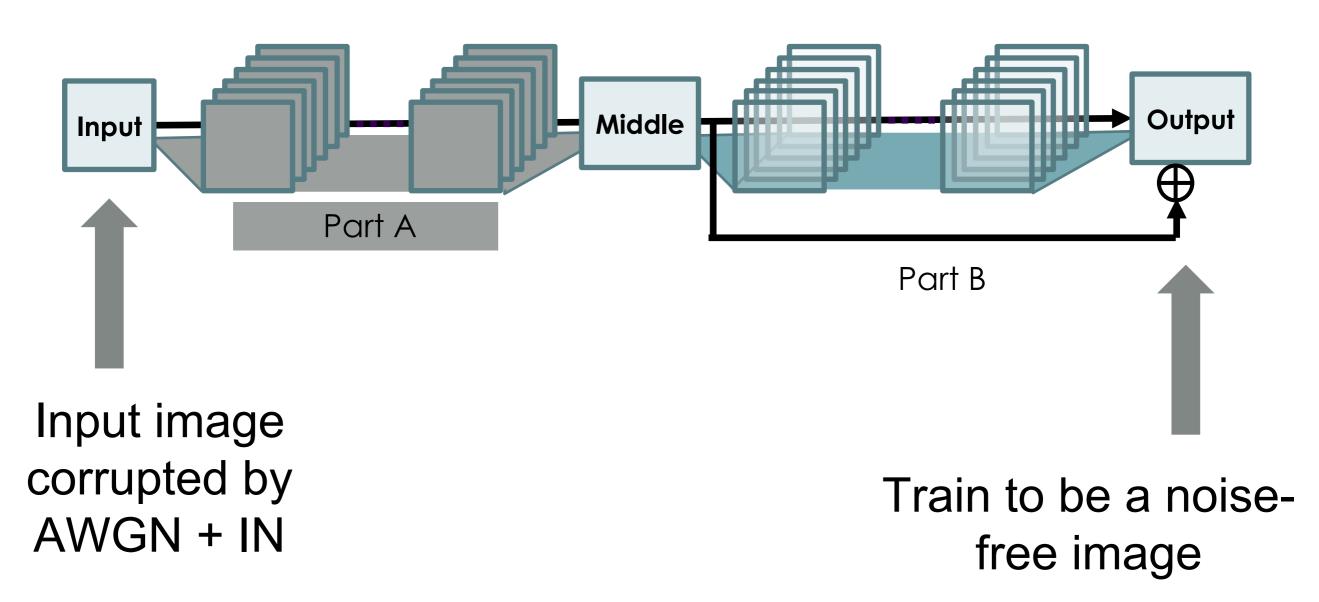
Feature of our method


- Blind denoising
- Does not require pre-processing such as IN removal.
- Execution time is short compared to high-precision methods

CNN architecture

Training

1 First step



Input image corrupted by AWGN + IN

Train to be a AWGN-only image

Training

2 Second step

Dataset

Microsoft COCO dataset is used for training.

→ By training with various noise levels, noise can be removed even if the noise level is not known (Blind denoising)

Training parameters

- 6000 training images
- Patch size: 33x33
- Batch size: 256
- Solver: Adam
- Initial learning rate: 0.00001
- Epoch: 10 (About 140000 iterations)

 About 30 hours to train with our MATLAB implementation on single GeForce GTX 1080Ti.

Conventional methods

- [1] Tao Chen and Hong Ren Wu, "Adaptive impulse detection using center-weighted median filters," IEEE Signal Processing Letters, vol. 8, no. 1, pp. 1–3, 2001.
- [2] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian, "Image denoising by sparse 3-d transform- domain collaborative filtering," IEEE Transactions on image processing, vol. 16, no. 8, pp. 2080–2095, 2007.
- [3] L. Liu, L. Chen, C. P. Chen, Y. Y. Tang *et al.*, "Weighted joint sparse representation for removing mixed noise in image," *IEEE transactions on cybernetics*, vol. 47, no. 3, pp. 600–611, 2017
- [4] M.T. Islam, S.M. Rahman, M.O. Ahmad, and M. Swamy, "Mixed gaussian-impulse noise reduction from images using convolutional neural network," Signal Processing: Image Communication, vol.68, pp.26–41, 2018.

Mixed noise $\sigma = 15$ p = 15,30,45s = 0

Imaga	р	Method			
lmage		AWCMF + BM3D	(ACWMF+) WSR	(ACWMF +) Islam's	Ours
Lena	15%	32.41	32.06	32.28	32.56
	30%	30.25	30.27	29.10	31.71
	45%	26.65	28.09	24.87	30.36
	15%	26.70	27.60	25.67	29.43
Barbara	30%	24.79	25.63	24.17	28.32
	45%	22.59	22.79	21.67	26.25
	15%	29.60	29.51	28.86	29.16
Bridge	30%	27.16	27.67	26.54	28.09
	45%	24.02	22.44	22.86	26.53
	15%	29.65	29.16	29.12	30.30
Boat	30%	27.55	27.72	27.02	29.19
	45%	24.78	25.17	23.62	27.60
	15%	33.42	33.66	32.52	32.87
Airplane	30%	30.36	31.79	28.81	31.88
	45%	25.51	26.73	23.32	30.44
	15%	34.94	35.02	34.07	33.49
Pepper	30%	31.60	32.26	29.90	33.36
	45%	26.71	28.73	24.54	32.09
	15%	32.51	32.30	31.61	31.73
Hill	30%	30.36	30.40	29.04	30.98
	45%	26.56	27.65	24.69	29.86
	15%	27.64	27.03	27.70	28.51
BSDS300	30%	25.76	25.78	25.29	27.30
	45%	22.88	23.59	22.13	25.87

Mixed noise $\sigma = 25$ p = 15,30,45s = 0

Imaga	р	Method			
Image		AWCMF + BM3D	(ACWMF+) WSR	(ACWMF +) Islam's	Ours
Lena	15%	29.87	29.81	29.87	30.46
	30%	28.10	28.41	27.93	29.79
	45%	25.53	26.32	24.88	28.54
	15%	24.91	24.87	24.52	27.28
Barbara	30%	23.57	23.58	23.36	26.35
	45%	21.91	22.04	21.65	24.75
	15%	26.76	26.37	26.61	26.72
Bridge	30%	25.32	25.31	25.10	25.97
	45%	22.98	21.40	22.62	24,81
	15%	27.47	27.11	27.61	28.31
Boat	30%	26.01	26.09	26.08	27.39
	45%	23.70	24.30	23.45	26.10
	15%	30.44	30.62	30.34	30.73
Airplane	30%	28.06	28.55	28.00	29.90
	45%	24.31	24.51	23.97	28.40
	15%	31.65	31.79	31.65	31.76
Pepper	30%	28.95	29.84	28.70	31.30
	45%	25.36	26.56	24.87	30.04
	15%	29.70	29.30	29.48	29.55
Hill	30%	28.09	28.41	27.80	28.99
	45%	25.16	26.10	24.59	28.01
	15%	25.74	25.42	25.97	26.83
BSDS300	30%	24.35	24.34	24.42	25.95
	45%	22.10	22.78	21.89	24.80

Mixed noise

$$\sigma$$
 = 20

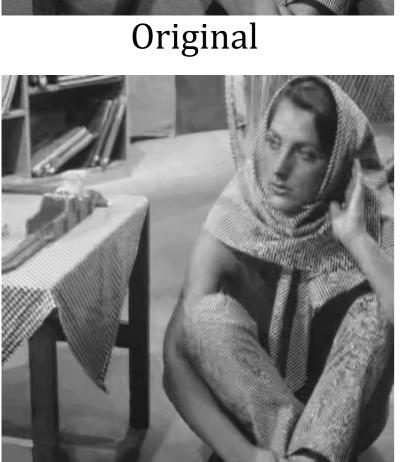
$$p = 10$$

$$s = 15$$

Image	Method					
	AMF + BM3D	(AMF +) WSR	(AMF +) Islam's	Ours		
Lena	30.50	30.32	30.12	31.10		
Barbara	25.10	25.81	24.68	28.11		
Bridge	27.46	27.51	27.12	27.36		
Boat	27.88	27.72	27.79	28.88		
Airplane	30.85	30.98	30.17	31.22		
Pepper	32.62	32.76	31.84	32.43		
Hill	30.43	30.24	29.83	30.10		
BSDS300	26.03	25.86	25.97	27.24		

Comparison on running time

Mixed noise


$$\sigma$$
 = 15

$$p = 15$$

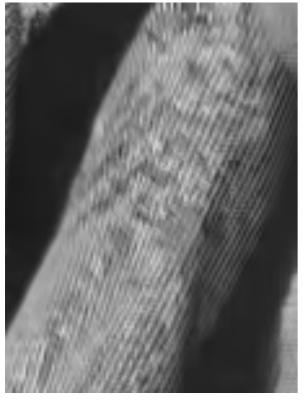
$$s = 0$$

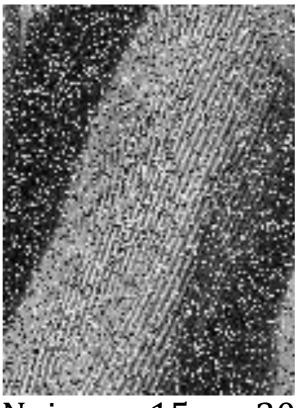
Image	Device	Method			
		AWCMF + BM3D	(ACWMF+) WSR	(ACWMF +) Islam's	Ours
256x256	CPU	0.99 s	13.1 min.	2.07 s	6.48 s
	GPU	_	-	1.06 s	0.42 s
512x512	CPU	5.05 s	49.7 min.	7.22 s	30.39 s
	GPU	_	_	3.18 s	0.80 s

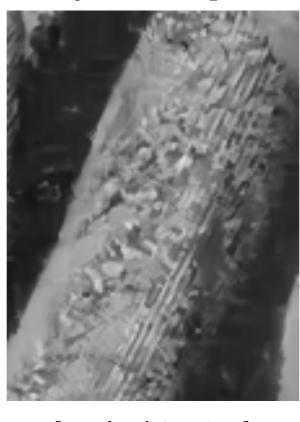
WSR / 25.60dB

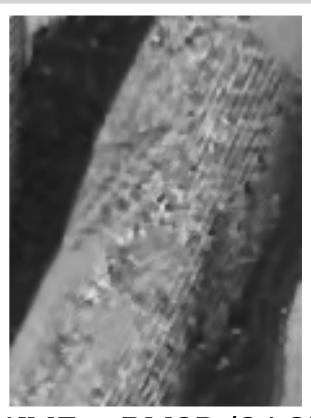
Noisy σ =15, p=30

Islam's / 24.17dB


ACWMF + BM3D/24.37dB


Proposed / 28.30dB


original


WSR / 25.60dB

Noisy σ =15, p=30

Islam's / 24.17dB

ACWMF + BM3D/24.37dB

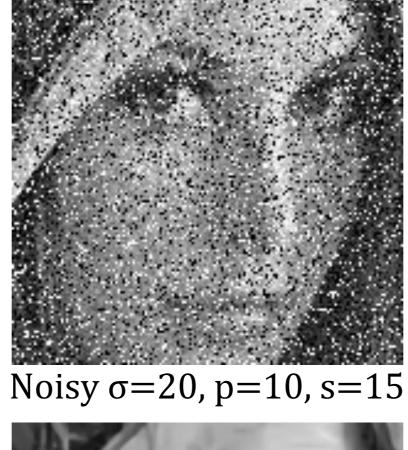
Proposed / 28.30dB

Original

WSR / 30.31dB

Noisy σ =20, p=10, s=15

Islam's / 30.12dB


AMF + BM3D/30.49dB

Proposed / 31.09dB

Original

Islam's / 30.12dB

AMF + BM3D/30.49dB

Proposed / 31.09dB

Training method

Mixed noise

$$\sigma = 25$$

$$p = 15,30,45$$

	$(\sigma = 25)$ p	Training method		
Image		Proposed	Without	Without
			division	skip connection
Test images	15%	29.24	27.72	28.07
	30%	28.54	26.82	27.65
	45%	27.22	25.46	26.53
BSDS300	15%	26.83	25.84	26.37
	30%	25.95	24.93	25.62
	45%	24.8	23.74	24.53

Conclusion

- We propose a new method for removing mixed noise based on CNN.
 - → Blind denoising is achieved by training with various noise levels
 - → Robustness against the noise is obtained by not using impulse noise removal method as preprocessing.

Thanks!

Source code is available at: http://tkhm.elec.keio.ac.jp/achievement