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Abstact

Peak detection and baseline suppression in a noisy signal
with an unknown baseline.
In practical applications, one of the most successful
approaches to joint baseline suppression and peak
localization is based on the continuous wavelet transform.
Reformulate this as a convolutional neural network.
Demonstrate that with sufficient training data, the
approach consistently compares to (and often
outperforms) the optimized continuous wavelet method.
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Peak detection problem

Peak finding – detect the
existence of peak and locate
the position.
Baseline suppression – carry
out this task robustly in the
presence of a baseline.
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Background
Study by Yang et al1 – compares:

7 smoothing methods.
5 baseline correction methods.
8 peak finding criterions.

Alternative – joint baseline correction and peak
detection/localization.
“Results show that CWT provides the best performance”.

1Chao Yang, Zengyou He, and Weichuan Yu. “Comparison of public
peak detection algorithms for MALDI mass spectrometry data analysis”.
In: BMC Bioinformatics 10 (2009). doi: 10.1186/1471-2105-10-4.
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Signal model

s(f) = b(f) + v(f − f0) + s · e(f)
where

s(f) : Measured spectrum
b(f) : Baseline
v(f) : Peak line-shape
e(f) : i.i.d Gaussian noise 0 25 50 75 100 125 150 175 200
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Continuous wavelet peak localization

The mexican hat wavelet

ψa(f) =
2√

3aπ1/4

(
1 − f2

a2

)
exp

(
− f2

2a2

)
Write as a convolutional sum
and pick c[j]

c[j] =
W∑

f=1

s[f + j]ψa[f]

Mexican hat example:
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Suppressing the baseline

The continuous wavelet peak localization scheme suppresses a
locally smooth baseline, i.e. baseline is modelled as constant
plus an odd signal:

b(f) = δ + g(f), g(f) = g(−f)
The convolution with the baseline then vanishes:

(b ∗ ψ)(f) =
∫ ∞

−∞
b(f′)ψa(f′ − f)df′ = 0

This is due to the CW begin a zero–mean symmetric function.
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As a convolution network

1–d convolutional layer:

χ[j] =
W∑

f=1

s[f + j]ϕ[f]

Softmax layer:

π[j] = exp(c · χ[j])∑F−W
k=0 exp(c · χ[k])

Linear readout layer:

f̂ =
F−W∑
j=0

π[j]w[j]

1-D CONVOLUTION

SOFTMAX

FULLY CONNECTED LAYER

Spectrum (200)

Peak location estimate (1)

Convolution kernel (40)

Scale (1)

Convolution (161)

Probability vector (161)

Frequency weights (161)

REPRESENTATION PARAMETERS

Formulation enables end–to–end learning
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Data generation
Generate spectra according to
our model:
s(f) = b(f) + v(f − f0) + s · e(f)

1. Baseline is generated using
smoothed Gaussian random
walk.

2. Add Voigt shaped peak:
v(f) = 1

σ
√

2πRe
[
w
(

f+iγ
σ
√

2

)]
3. Add i.i.d Gaussian noise.
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Mexican hat wavelet width

ψa(f) =
2√

3aπ1/4

(
1 − f2

a2

)
exp

(
− f2

2a2

)

Error =
N∑

i=1
|fi − f̂i|
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Peak localization

Oracle peak picking: No baseline – pick maximum value.
Oracle convolution: No baseline – convolve with true peak
lineshape – pick maximum value.
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Learning curves and learned kernels
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Limitations and possible extensions
Limitations:

Spectral peak shape assumed constant.
Peak signal–to–noise ratio was held constant in any given
training.
It was assumed that a single peak always exists.

Possible extensions:
Have multiple peak location estimators and endow them
with an attention mechanism so that each estimator will
focus on a sub-range of frequencies.
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Conclusions

The CNN approach to peak localization shows great promise,
as it can more efficiently leverage data to outperform the
current state of the art, and can readily be extended and
incorporated as a module in a larger neural network
architecture.
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Thank you
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