Peak Detection and Baseline Correction using a Convolution Neural Network

Mikkel N. Schmidt, **Tommy S. Alstrøm**, Marcus Svendstorp and Jan Larsen

Technical University of Denmark, DTU Compute, Department of Applied Mathematics and Computer Science

In memory of Prof. Jan Larsen, 1965–2018 \blacksquare

Honory special session Friday 8.30–10.30, organized by Professor Tülay Adali, University of Maryland Baltimore Professor Zheng-Hua Tan, Aalborg University

Abstact

- *Peak detection* and *baseline suppression* in a noisy signal with an unknown baseline.
- In practical applications, one of the most *successful* approaches to *joint* baseline suppression and peak localization is based on the *continuous wavelet transform*.
- Reformulate this as a *convolutional neural network*.
- Demonstrate that with sufficient training data, the approach consistently *compares* to (and often outperforms) the *optimized continuous wavelet method*.

Peak detection problem

- Peak finding detect the existence of peak and locate the position.
- Baseline suppression carry out this task robustly in the presence of a baseline.

1.5

DTU

Background

Study by Yang et al^1 – compares:

- 7 smoothing methods.
- **5** baseline correction methods.
- 8 peak finding criterions.

- Alternative joint baseline correction and peak detection/localization.
- "Results show that CWT provides the best performance".

¹Chao Yang, Zengyou He, and Weichuan Yu. "Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis". In: BMC Bioinformatics 10 (2009). DOI: 10.1186/1471-2105-10-4.

Signal model

$$s(f) = b(f) + v(f - f_0) + s \cdot e(f)$$

where

- s(f) : Measured spectrum
- b(f): Baseline
- v(f) : Peak line-shape
- e(f): i.i.d Gaussian noise

Continuous wavelet peak localization

The mexican hat wavelet

$$\psi_a(f) = \frac{2}{\sqrt{3a\pi^{1/4}}} \left(1 - \frac{f^2}{a^2}\right) \exp\left(-\frac{f^2}{2a^2}\right)$$

Write as a convolutional sum and pick c[j]

$$c[j] = \sum_{f=1}^W s[f+j]\psi_a[f]$$

DTU

The continuous wavelet peak localization scheme suppresses a locally smooth baseline, i.e. baseline is modelled as constant plus an odd signal:

$$b(f) = \delta + g(f), g(f) = g(-f)$$

The convolution with the baseline then vanishes:

$$(b * \psi)(f) = \int_{-\infty}^{\infty} b(f)\psi_a(f-f)df = 0$$

This is due to the CW begin a zero–mean symmetric function.

As a convolution network

1–d convolutional layer:

$$\chi[j] = \sum_{f=1}^{W} s[f+j]\phi[f]$$

Softmax layer:

$$\pi[j] = \frac{\exp(c \cdot \chi[j])}{\sum_{k=0}^{F-W} \exp(c \cdot \chi[k])}$$

Linear readout layer:

$$\widehat{f} = \sum_{j=0}^{F-W} \pi[j] w[j]$$

Formulation enables end-to-end learning

Data generation

Generate spectra according to our model:

$$s(f) = b(f) + v(f - f_0) + s \cdot e(f)$$

- 1. Baseline is generated using smoothed Gaussian random walk.
- 2. Add Voigt shaped peak: $v(f) = \frac{1}{\sigma\sqrt{2\pi}} \operatorname{Re}\left[w\left(\frac{f+i\gamma}{\sigma\sqrt{2}}\right)\right]$
- 3. Add i.i.d Gaussian noise.

Technical University of Denmark, DTU Compute, Department of Applied Mathematics and Computer Science

Mexican hat wavelet width

Ξ

Peak localization

Oracle peak picking: No baseline – pick maximum value. Oracle convolution: No baseline – convolve with true peak lineshape – pick maximum value.

Technical University of Denmark, DTU Compute, Department of Applied Mathematics and Computer Scienc

DTU

Limitations and possible extensions

Limitations:

- Spectral peak shape assumed constant.
- Peak signal-to-noise ratio was held constant in any given training.
- It was assumed that a single peak always exists.

Possible extensions:

 Have multiple peak location estimators and endow them with an attention mechanism so that each estimator will focus on a sub-range of frequencies. The CNN approach to peak localization shows great promise, as it can more *efficiently leverage data* to outperform the current state of the art, and can readily be extended and *incorporated as a module in a larger neural network architecture*.

Thank you

Technical University of Denmark, DTU Compute, Department of Applied Mathematics and Computer Science