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discovery procedure
= Developed, implemented, and released

(https://github.com/jdrex/ctcdecode)
subword prefix beam search decoding

>

terate over training procedure until desired
vocabulary size is reached

= Segmentation procedure

>

Single best segmentation (or n-best list) can be

Table: Results from the encoder-decoder model

with attention on the WSJ dataset.

dataset. WER denotes results using the standard
prefix beam search algorithm; sWER results use
our updated algorithm.

algorithm for CTC found with Vitterbi search Subword Beam Search for CTC clean other
Results > Segmenta.hon.s can b¢ sa.mpled from the following Segmentation o SWER (+ LM) sWER (+ LM)
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Baseline Models and Data

Modifications for ASR

= Listen, Attend, and Spell architecture (Chan,

= Qur goal: capture acoustic/phonetic
properties, not semantics

» Limit length (in characters) of discovered units

>

>

Small vocabulary
Spaces are always a separate, single character

2016) for attention-based ASR

Variant of Deepspeech?2 architecture (Amodei,

2016) for CTC-based ASR

Data: Wall Street Journal (WSJ) and
Librispeech corpora

» Standard train/dev/test splits

Word-level 4-gram language models
» Included in beam search with WEST composition

= Example Segmentations (WSJ)

V| maxlen method segmentation

5000 oo  best HISTORICAL LY

500 4 best HIS T OR ICAL LY
sample HIS TO RI CALL Y
sample H IS TO R ICAL LY

different sequences of subword units

» Valid outputs for prefix CAT: C—A—T, CA—T,
C—AT, C—AT—AT, CAT

» Standard algorithm would assign these 5 options
to 4 different prefixes

» Simplest solution (check match of overall character

string) would collapse all of the above plus these
invalid outputs: CA—A—T, CAT—T

= Subword Prefix Beam Search Decoding

»  Maximum subword unit length M
» Updated prefix probability:

M
p(plz,t) =v(py, t) + > Y(Pn, 2, 1)
z=1

» ~v(p,, z,t)Iis the probability of outputting prefix p
by time ¢t such that a non-blank label of length z is
outputattimet

Table: Results from the CTC model on the
Librispeech dataset.

Conclusions

= Subword regularization is effective for ASR
» Larger improvements with attention-based than
with CTC-based model
» CTC-based model requires modified beam search
decoding for optimal performance

= More analysis needed on choice of subword
vocabulary
» Comparison with Gram-CTC (Liu, 2017)
» Interaction with language model



