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Overview

Motivation

Extend subword regularization (Kudo 2018)

frommachine translation to ASR

Apply subword regularization to both

attention-based andCTC-based ASRmodels

Understand interactions between subword

regularization and use of languagemodel

during decoding

Innovations

ASR-specific modifications to subword unit

discovery procedure

Developed, implemented, and released

(https://github.com/jdrex/ctcdecode)

subword prefix beam search decoding

algorithm for CTC

Results

Subword regularization improves ASR

performance in all cases, is especially

effective with attention-basedmodels

Novel subword prefix beam search decoding

algorithm is necessary for use of subword

regularization with CTC-basedmodels

Improvements from subword regularization

are complementary with languagemodel

addition

Baseline Models and Data

Listen, Attend, and Spell architecture (Chan,

2016) for attention-based ASR

Variant of Deepspeech2 architecture (Amodei,

2016) for CTC-based ASR

Data: Wall Street Journal (WSJ) and
Librispeech corpora

I Standard train/dev/test splits

Word-level 4-gram languagemodels
I Included in beam search withWFST composition

Subword Regularization

Jointly learn vocabulary of subword units and
a probabilistic model for segmenting text

I Enables use of different segmentation of target

text on each training iteration

I Produces large gains over BPEwhen used with

high-quality attention-basedmachine translation

models

Unit discovery procedure
I Initialize with very large vocabulary of most

common subword units in text corpus

I Train unigram languagemodel

I Remove 5% of units that contribute least to data

likelihood

I Iterate over training procedure until desired

vocabulary size is reached

Segmentation procedure
I Single best segmentation (or n-best list) can be

found with Vitterbi search

I Segmentations can be sampled from the following

multinomial distribution:

P (xi|X) ∼=
p(xi)α∑n

j=1 p(xj)α

I n is the number of n-best segmentations used to

approximate the true distribution

I α is the regularization parameter: α = 0 creates a
uniform distribution, increasing αmoves closer to

the Viterbi segmentation

Modifications for ASR

Our goal: capture acoustic/phonetic
properties, not semantics

I Limit length (in characters) of discovered units

I Small vocabulary

I Spaces are always a separate, single character

Example Segmentations (WSJ)

|V | maxlen method segmentation

5000 ∞ best HISTORICAL LY
500 4 best HIS T OR ICAL LY

sample HIS TO RI CALL Y
sample H IS TO R ICAL LY

Results - Attention

WER

Segmentation α No LM + LM

Character 16.0 12.4

Unigram, 100 units,≤ 2 ∞ 16.0 12.1

1 14.1 10.7

0.5 14.2 11.6

0.2 14.3 11.5

Unigram, 200 units,≤ 4 ∞ 15.1 11.8

1 14.0 10.7

0.5 14.3 11.1

0.2 14.8 11.0

Table: Results from the encoder-decoder model

with attention on theWSJ dataset.

Subword Beam Search for CTC

Prefix Beam Search Decoding
I Keep n prefixes with highest cumulative probability

at time t:

p(p|x, t) = γ(pb, t) + γ(pn, t)

I γ(pb, t) is the probability of outputting prefix p by

time t such that the blank label is output at time t
I γ(pn, t) is the probability of outputting prefix p by

time t such that a non-blank label is output at time t

Problem: same prefix can be generatedwith
different sequences of subword units

I Valid outputs for prefixCAT:C—A—T,CA—T,

C—AT,C—AT—AT,CAT

I Standard algorithmwould assign these 5 options

to 4 different prefixes

I Simplest solution (check match of overall character

string) would collapse all of the above plus these

invalid outputs: CA—A—T,CAT—T

Subword Prefix Beam Search Decoding
I Maximum subword unit lengthM
I Updated prefix probability:

p(p|x, t) = γ(pb, t) +
M∑

z=1
γ(pn, z, t)

I γ(pn, z, t) is the probability of outputting prefix p
by time t such that a non-blank label of length z is

output at time t

Results - CTC

WER sWER

Segmentation α (no LM) (no LM) (+ LM)

Character 19.8 19.8 16.1

Unigram, 100,≤ 2 ∞ 20.0 20.0 15.1

10 19.8 19.5 14.1

5 19.4 18.8 14.0

2 22.0 19.5 14.8

1 28.5 20.6 15.5

0.5 37.9 22.0 15.7

Table: Results from the CTCmodel on theWSJ

dataset. WER denotes results using the standard

prefix beam search algorithm; sWER results use

our updated algorithm.

clean other

Segmentation α sWER (+ LM) sWER (+ LM)

Character 11.9 (8.3) 31.1 (24.4)

Unigram, 200,≤ 3 ∞ 11.9 (8.1) 30.5 (23.1)

2 12.3 (7.4) 30.4 (22.0)

1 12.4 (7.7) 30.2 (22.5)

0.5 13.8 (8.9) 31.8 (24.6)

Unigram, 500,≤ 4 ∞ 11.7 (8.2) 29.9 (23.0)

2 12.6 (7.8) 29.9 (21.7)

1 12.1 (8.0) 29.4 (22.4)

0.5 12.4 (9.7) 30.7 (25.3)

Table: Results from the CTCmodel on the

Librispeech dataset.

Conclusions

Subword regularization is effective for ASR
I Larger improvements with attention-based than

with CTC-basedmodel

I CTC-basedmodel requires modified beam search

decoding for optimal performance

More analysis needed on choice of subword
vocabulary

I Comparison with Gram-CTC (Liu, 2017)

I Interaction with languagemodel


