Overview

Motivation

- Extend subword regularization (Kudo 2018) from machine translation to ASR
- Apply subword regularization to both attention-based and CTC-based ASR models
- Understand interactions between subword regularization and use of language model during decoding

Innovations

- ASR-specific modifications to subword unit discovery procedure
- Developed, implemented, and released (https://github.com/jdrex/ctcdecode) subword prefix beam search decoding algorithm for CTC

Results

- Subword regularization improves ASR performance in all cases, is especially effective with attention-based models
- Novel subword prefix beam search decoding algorithm is necessary for use of subword regularization with CTC-based models
- Improvements from subword regularization are complementary with language model addition

Baseline Models and Data

- Listen, Attend, and Spell architecture (Chan, 2016) for attention-based ASR
- Variant of Deepspeech2 architecture (Amodei, 2016) for CTC-based ASR
- Data: Wall Street Journal (WSJ) and Librispeech corpora
 - Standard train/dev/test splits
- Word-level 4-gram language models Included in beam search with WFST composition

Subword Regularization and Beam Search Decoding for End-to-End Automatic Speech Recognition

Jennifer Drexler James Glass

MIT Computer Science and Artificial Intelligence Laboratory 32 Vassar Street, Cambridge, MA 02139

Subword Regularization

Jointly learn vocabulary of subword units and a probabilistic model for segmenting text

- Enables use of different segmentation of target text on each training iteration
- Produces large gains over BPE when used with high-quality attention-based machine translation models

Unit discovery procedure

- Initialize with very large vocabulary of most common subword units in text corpus
- Train unigram language model
- ▶ Remove 5% of units that contribute least to data likelihood
- Iterate over training procedure until desired vocabulary size is reached

Segmentation procedure

- Single best segmentation (or n-best list) can be found with Vitterbi search
- Segmentations can be sampled from the following multinomial distribution:

$$P(x_i|X) \cong \frac{p(x_i)^{\alpha}}{\sum_{j=1}^n p(x_j)^{\alpha}}$$

- n is the number of n-best segmentations used to approximate the true distribution
- α is the regularization parameter: $\alpha = 0$ creates a uniform distribution, increasing α moves closer to the Viterbi segmentation

Modifications for ASR

Our goal: capture acoustic/phonetic properties, not semantics

- Limit length (in characters) of discovered units
- Small vocabulary
- ► Spaces are always a separate, single character

Example Segmentations (WSJ)

V	maxlen	method	segmentation
5000	∞	best	HISTORICAL LY
500	4	best	HIS T OR ICAL LY
		sample	HIS TO RI CALL Y
		sample	H IS TO R ICAL LY

Results - Attention

		WER	
Segmentation	lpha	NoLM	+LM
Character		16.0	12.4
Unigram, 100 units, ≤ 2	∞	16.0	12.1
	1	14.1	10.7
	0.5	14.2	11.6
	0.2	14.3	11.5
Unigram, 200 units, ≤ 4	∞	15.1	11.8
	1	14.0	10.7
	0.5	14.3	11.1
	0.2	14.8	11.0

Table: Results from the encoder-decoder model with attention on the WSJ dataset.

Subword Beam Search for CTC

Prefix Beam Search Decoding

Keep n prefixes with highest cumulative probability at time t:

$$p(\boldsymbol{p}|\boldsymbol{x},t) = \gamma(\boldsymbol{p}_b,t) + \gamma(\boldsymbol{p}_n,t)$$

- $\mathbf{P} (\mathbf{p}_b, t)$ is the probability of outputting prefix \mathbf{p} by time t such that the blank label is output at time t
- $\gamma(\boldsymbol{p}_n, t)$ is the probability of outputting prefix \boldsymbol{p} by time t such that a non-blank label is output at time t

Problem: same prefix can be generated with different sequences of subword units

- ► Valid outputs for prefix CAT: C—A—T, CA—T, C-AT, C-AT-AT, CAT
- Standard algorithm would assign these 5 options to 4 different prefixes
- Simplest solution (check match of overall character string) would collapse all of the above plus these invalid outputs: CA-A-T, CAT-T

Subword Prefix Beam Search Decoding

- Maximum subword unit length M
- Updated prefix probability:

$$p(\boldsymbol{p}|\boldsymbol{x},t) = \gamma(\boldsymbol{p}_b,t) + \sum_{z=1}^{M} \gamma(\boldsymbol{p}_n,z,t)$$

• $\gamma(\boldsymbol{p}_n, z, t)$ is the probability of outputting prefix \boldsymbol{p} by time t such that a non-blank label **of length z** is output at time t

Segmen Charact Unigram

Table: Results from the CTC model on the WSJ dataset. WER denotes results using the standard prefix beam search algorithm; sWER results use our updated algorithm.

Segmenta Character Unigram,

Unigram,

Table: Results from the CTC model on the Librispeech dataset.

Subword regularization is effective for ASR

Results - CTC

		WER	sWER	
ntation	lpha	(no LM)	(no LM)	(+LM)
ter		19.8	19.8	16.1
m, 100, ≤ 2	∞	20.0	20.0	15.1
	10	19.8	19.5	14.1
	5	19.4	18.8	14.0
	2	22.0	19.5	14.8
	1	28.5	20.6	15.5
	0.5	37.9	22.0	15.7

	clean	other	
lpha	sWER (+ LM)	sWER (+ LM)	
	11.9 (8.3)	31.1 (24.4)	
∞	11.9 (8.1)	30.5 (23.1)	
2	12.3 (7.4)	30.4 (22.0)	
1	12.4 (7.7)	30.2 (22.5)	
0.5	13.8 (8.9)	31.8 (24.6)	
∞	11.7 (8.2)	29.9 (23.0)	
2	12.6 (7.8)	29.9 (21.7)	
1	12.1 (8.0)	29.4 (22.4)	
0.5	12.4 (9.7)	30.7 (25.3)	
	∞ 2 1 0.5 ∞ 2 1 1	α sWER(+LM)11.9 (8.3) ∞ 11.9 (8.1)212.3 (7.4)112.4 (7.7)0.513.8 (8.9) ∞ 11.7 (8.2)212.6 (7.8)112.1 (8.0)	

Conclusions

Larger improvements with attention-based than with CTC-based model

CTC-based model requires modified beam search decoding for optimal performance

More analysis needed on choice of subword vocabulary

 Comparison with Gram-CTC (Liu, 2017) Interaction with language model