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Introduction & Contribution

Key Takeaways

I Unlike Shannon’s Sampling Theorem, the analog-to-digital converters
(ADCs) are limited in dynamic range, thus prone to saturation and clipping.
In order to circumvent these problems, the authors introduced the concept
of Unlimited Sampling in [1].

I Behind work [1] are recent developments in ADC design - the Self-Reset
ADCs, which compute modulo samples [2].

I The Unlimited Sampling Theorem proves that a bandlimited signal can
be perfectly recovered from modulo samples. The sampling rate is
independent of the ADC threshold.

I As a step towards practical implementation, we consider not only sampling,
but also quantization.

I We combine the advantages of Unlimited Sampling and One-Bit
Sigma-Delta Quantization (SDQ) to obtain an ADC scheme that has

low complexity due to coarseness of quantization and at the same time

overcomes the dynamic range limitations of conventional One-Bit SDQ.

Unlimited Sampling of Bandlimited Functions

I Let τ > 1 be the (over)sampling rate and g(t) be a π-bandlimited function.

I In Unlimited Sampling framework, we sample g using non-linear principle:

y [n] = modλ
(
g
(
n
τ

))
, n ∈ Z, τ > 1

I Such folded samples are acquired using a version of the Self-Reset ADC [2].

I Even if g(t)� λ, y [n] ∈ [0, λ). In this work, we set λ = 1.

Unlimited Sampling in Action

(a) Usual ADC compared with self-reset ADC. In usual ADC, whenever the input signal fIn voltage exceeds

some λ, the output signal fOut saturates and this resuts in clipping. In contrast, the self-reset ADC folds

fIn such that fOut is always in the range [−λ, λ]. (b) For π-bandlimited function g we plot the continuous

version of self-reset ADC, modλ (g (t)), together with uniform samples y [n].

A sufficient condition for recovery of π-bandlimited signal g from its modulo

samples y [n] = modλ
(
g
(
n
τ

))
up to additive multiples of 2λ is τ > πe.

Unlimited Sampling Theorem [1]

Unlimited Sampling Meets One-Bit Quantization

I In order to discretize the range, y [n] is quantized via the first order, one-bit

Sigma-Delta Quantizer:

u[n] = u[n − 1] + y [n]− q[n], q[n] = sign (u[n − 1] + y [n])

I System architecture for One-Bit Unlimited Sampling:

Conventional One-Bit Sampling vs One-Bit Unlimited Sampling

(a) Conventional one-bit sampling leads to reconstruction failure while our method allows for fair recon-

struction. (b) Conventional one-bit samples exhibit saturation if the dynamic range exceeds [-1,1]. (c)
Due to amplitude folding, one-bit modulo samples capture sufficiently more information about the signal

than conventional one-bit samples.

Recovery from One-Bit Modulo Samples

Function g ∈ Bπ admits a decomposition g [n] = y [n] + εg [n], εg [n] ∈ 2λZ.

Modular Decomposition [1]

I With SDQ involved, we decompose not g , but its multi-bit representation:

qMB[n] = q[n] + εg [n]. Recovering qMB[n] boils down to finding εg [n].

I Consider smoothing kernel ψN(t) := BN
(
N
2 t
)
/max

(
BN (t)

)
, where BN is a

B-spline of order N , and its sampled version ψN
h [n] with sampling rate

h ∈ 2N.

Recovery Algorithm

Input: q[n], ψN
h [n] and βg ≥ ‖g‖L∞.

Output: g̃(t) ≈ g(t).
1: Compute (∆q ∗ ψN

h )[n].
2: Compute mod1

(
(∆q ∗ ψN

h )[n]
)
− (∆q ∗ ψN

h )[n] and retain one
point from each of its non-zero neighborhoods to obtain ∆ε̃g [n].

3: Apply summation operator to obtain ε̃g [n].
4: Compute q̃MB[n] = q[n] + ε̃g [n].
5: Reconstruct g̃(t) from q̃MB[n] via low-pass filter.

Sufficiency Condition and Error Bound

Given
I g ∈ Bπ and not superoscillating, βg > ‖g‖L∞,

I q[n] - the one-bit modulo samples of g(t),

I ψN
h [n] - the samples of the smoothing kernel ψN

h (t) with sampling rate
hr := 2

⌈
‖∂2ψN

h ‖L1
⌉

,

I a valid reconstruction kernel ϕ(t),

a sufficient condition for approximate recovery of g̃(t) from q[n] (up to ad-
ditive multiples of 2) is

τ > 4πeβg
(⌈
‖∂2ψN

h ‖L1
⌉
‖ψN

h ‖L1 + 1
)
.

Under these conditions, Recovery Algorithm yields the reconstruction error

|g(t)− g̃(t)| 6 1

τ

(
‖∂ϕ‖L1 + M(ϕ, ψN

h )
)
,

where M(ϕ, ψN
h ) is a constant dependent on the choice of kernels ϕ and ψN

h .

One-Bit Unlimited Sampling Theorem

I Our algorithm allows for recovery with accuracy O(1/τ ), which is close to

the best known error bound O(τ−3/2) for conventional first order SDQ [3].

Reconstruction Example
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True Signal Residuals
Recovered Residuals
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(a) Randomly generated π-bandlimited signal g , its one-bit modulo samples q[n] acquired with τ = 250 and

the reconstructed signal g̃ which is obtained using second order ψ2. The mean error |g − g̃ | is 2.1× 10−3.

(b) The true residual εg [n] and its approximate recovery ε̃g [n].
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