One-Bit Unlimited Sampling

Ayush Bhandari[‡] Felix Krahmer[†] Olga Graf[†]

[†]Technical University of Munich [‡]Imperial College London

Introduction & Contribution

Key Takeaways

- Unlike Shannon's Sampling Theorem, the analog-to-digital converters (ADCs) are limited in dynamic range, thus prone to saturation and clipping. In order to circumvent these problems, the authors introduced the concept of **Unlimited Sampling** in [1].
- Behind work [1] are recent developments in ADC design the Self-Reset **ADCs**, which compute modulo samples [2].
- The Unlimited Sampling Theorem proves that a bandlimited signal can be perfectly recovered from modulo samples. The sampling rate is independent of the ADC threshold.
- As a step towards practical implementation, we consider not only sampling, but also quantization.
- ► We combine the advantages of Unlimited Sampling and **One-Bit Sigma-Delta Quantization** (SDQ) to obtain an ADC scheme that has low complexity due to coarseness of quantization and at the same time overcomes the dynamic range limitations of conventional One-Bit SDQ.

Unlimited Sampling of Bandlimited Functions

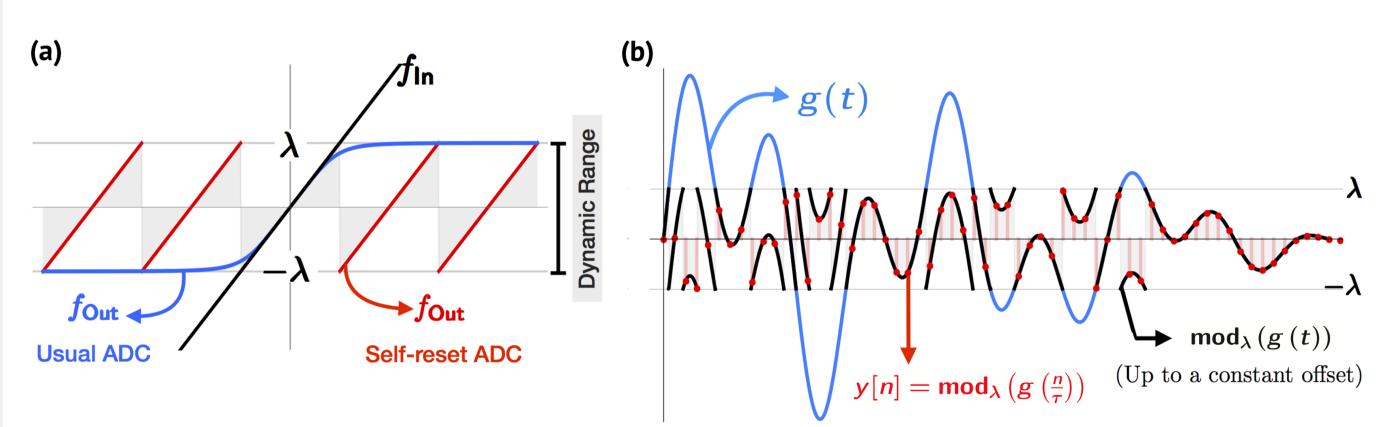
- Let $\tau \ge 1$ be the (over)sampling rate and g(t) be a π -bandlimited function.
- \blacktriangleright In Unlimited Sampling framework, we sample g using non-linear principle:

 $y[n] = \operatorname{mod}_{\lambda}\left(g\left(\frac{n}{\tau}\right)\right), \quad n \in \mathbb{Z}, \quad \tau \geqslant 1$

► Such folded samples are acquired using a version of the Self-Reset ADC [2].

▶ Even if $g(t) \gg \lambda$, $y[n] \in [0, \lambda)$. In this work, we set $\lambda = 1$.

Unlimited Sampling in Action



(a) Usual ADC compared with self-reset ADC. In usual ADC, whenever the input signal f_{ln} voltage exceeds some λ , the output signal f_{Out} saturates and this results in clipping. In contrast, the self-reset ADC folds f_{In} such that f_{Out} is always in the range $[-\lambda, \lambda]$. (b) For π -bandlimited function g we plot the continuous version of self-reset ADC, $mod_{\lambda}(g(t))$, together with uniform samples y[n].

Unlimited Sampling Theorem [1]

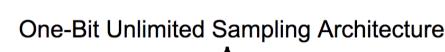
A sufficient condition for recovery of π -bandlimited signal g from its modulo samples $y[n] = \text{mod}_{\lambda}(g(\frac{n}{\tau}))$ up to additive multiples of 2λ is $\tau > \pi e$.

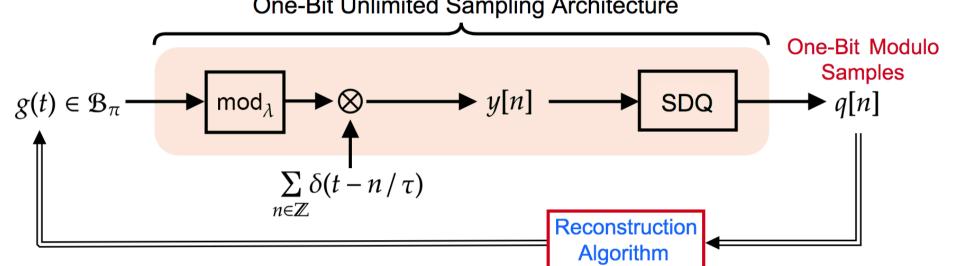
Unlimited Sampling Meets One-Bit Quantization

ln order to discretize the range, y[n] is quantized via the first order, one-bit Sigma-Delta Quantizer:

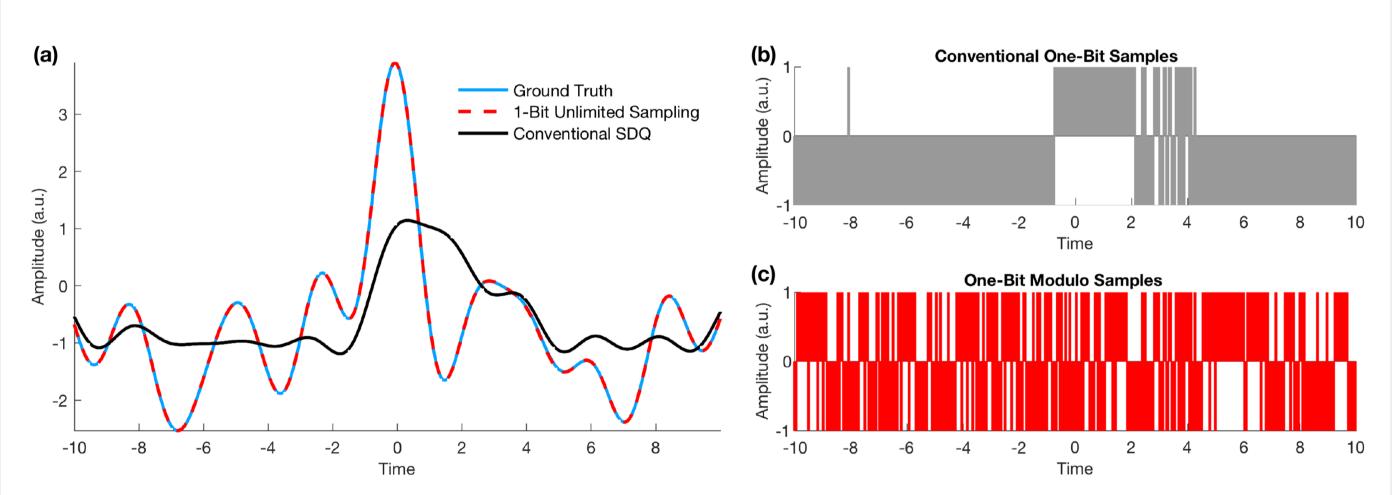
$$u[n] = u[n-1] + y[n] - q[n], \quad q[n] = sign(u[n-1] + y[n])$$

System architecture for One-Bit Unlimited Sampling:





Conventional One-Bit Sampling vs One-Bit Unlimited Sampling



(a) Conventional one-bit sampling leads to reconstruction failure while our method allows for fair reconstruction. (b) Conventional one-bit samples exhibit saturation if the dynamic range exceeds [-1,1]. (c) Due to amplitude folding, one-bit modulo samples capture sufficiently more information about the signal than conventional one-bit samples.

Recovery from One-Bit Modulo Samples

Modular Decomposition [1]

Function $g \in \mathcal{B}_{\pi}$ admits a decomposition g[n] =

- \blacktriangleright With SDQ involved, we decompose not g, but its multi-bit representation: $q_{\text{MB}}[n] = q[n] + \varepsilon_g[n]$. Recovering $q_{\text{MB}}[n]$ boils down to finding $\varepsilon_g[n]$.
- ► Consider smoothing kernel $\psi^N(t) := \mathsf{B}^N\left(\frac{N}{2}t\right) / \max\left(\mathsf{B}^N(t)\right)$, where B^N is a B-spline of order N, and its sampled version $\psi_h^N[n]$ with sampling rate $h \in 2\mathbb{N}$.

Recovery Algorithm

Input: $q[n], \psi_h^N[n]$ and $\beta_g \geq ||g||_{L^{\infty}}$. **Output:** $\tilde{g}(t) \approx g(t)$.

- Compute $(\Delta q * \psi_h^N)[n]$.
- 2: Compute mod₁ $((\Delta q * \psi_h^N)[n]) (\Delta q * \psi_h^N)[n]$ and retain one point from each of its non-zero neighborhoods to obtain $\Delta \tilde{\varepsilon}_g[n]$.
- 3: Apply summation operator to obtain $\tilde{\varepsilon}_g[n]$.
- 4: Compute $\tilde{q}_{\text{MB}}[n] = q[n] + \tilde{\varepsilon}_{g}[n]$.
- 5: Reconstruct $\tilde{g}(t)$ from $\tilde{q}_{MB}[n]$ via low-pass filter.

Imperial College london

$$y[n] + \varepsilon_g[n], \ \varepsilon_g[n] \in 2\lambda\mathbb{Z}.$$

Sufficiency Condition and Error Bound

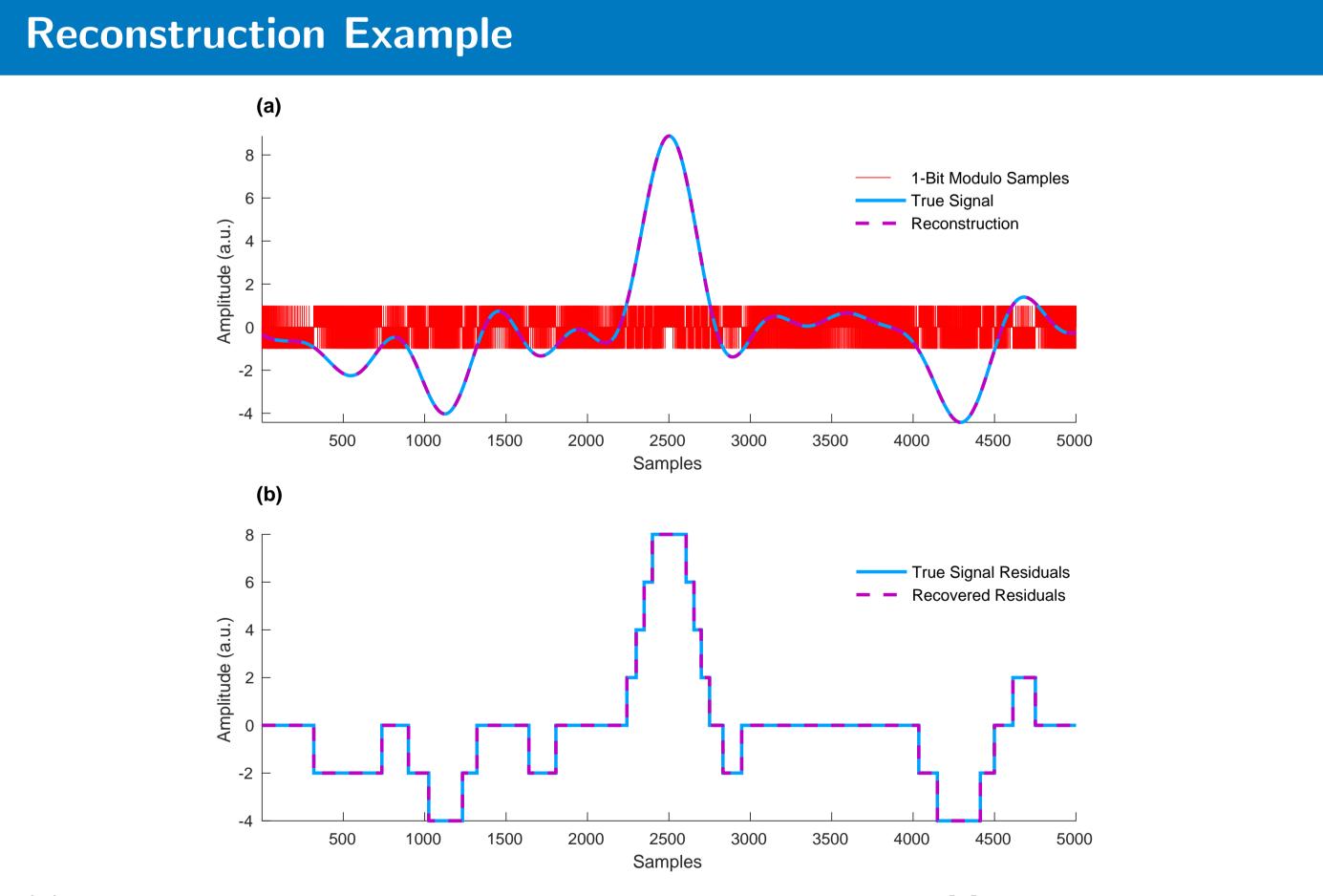
One-Bit Unlimited Sampling Theorem Given

- $h_r := 2 \left[\|\partial^2 \psi_h^N\|_{L^1} \right],$

$$au > 4\pi e \beta_g \left(\left| \cdot \right| \right)$$

$$|g(t) - \tilde{g}(t)| \leqslant$$

▶ $g \in \mathcal{B}_{\pi}$ and not superoscillating, $\beta_g \ge \|g\|_{L^{\infty}}$, \blacktriangleright q[n] - the one-bit modulo samples of g(t), $\blacktriangleright \psi_h^N[n]$ - the samples of the smoothing kernel $\psi_h^N(t)$ with sampling rate \blacktriangleright a valid reconstruction kernel $\varphi(t)$, a sufficient condition for approximate recovery of $\tilde{g}(t)$ from q[n] (up to additive multiples of 2) is $\left[\| \partial^2 \psi_h^{\mathcal{N}} \|_{L^1} \right] \| \psi_h^{\mathcal{N}} \|_{L^1} + 1
ight).$ Under these conditions, Recovery Algorithm yields the reconstruction error $\frac{\mathbf{I}}{\tau}\left(\|\partial\varphi\|_{L^1}+M(\varphi,\psi_h^N)\right),$ where $M(\varphi, \psi_h^N)$ is a constant dependent on the choice of kernels φ and ψ_h^N .

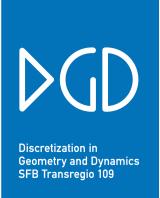


(b) The true residual $\varepsilon_g[n]$ and its approximate recovery $\tilde{\varepsilon}_g[n]$.

References

[1] A. Bhandari, F. Krahmer, and R. Raskar. On unlimited sampling. In proc. SampTA 2017, 2017. [2] J. Rhee and Y. Joo. Wide dynamic range CMOS image sensor with pixel level ADC. *Electron. Lett.*, 39(4):360-361, 2003.

[3] C. Güntürk. Approximating a bandlimited function using very coarsely quantized data: improved error estimates in Sigma-Delta modulation. J. Amer. Math. Soc., 17(1):229-242, 2004.



 \blacktriangleright Our algorithm allows for recovery with accuracy $O(1/\tau)$, which is close to the best known error bound $O(\tau^{-3/2})$ for conventional first order SDQ [3].

(a) Randomly generated π -bandlimited signal g, its one-bit modulo samples q[n] acquired with $\tau = 250$ and the reconstructed signal \tilde{g} which is obtained using second order ψ^2 . The mean error $|g - \tilde{g}|$ is 2.1×10^{-3} .